TILT STABILITY, UNIFORM QUADRATIC GROWTH, AND STRONG METRIC REGULARITY OF THE SUBDIFFERENTIAL

被引:65
作者
Drusvyatskiy, D. [1 ]
Lewis, A. S. [1 ]
机构
[1] Cornell Univ, Sch Operat Res & Informat Engn, Ithaca, NY 14853 USA
基金
美国国家科学基金会;
关键词
tilt stability; variational analysis; subdifferentials; quadratic growth; strong metric regularity; prox-regularity;
D O I
10.1137/120876551
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that uniform second-order growth, tilt stability, and strong metric regularity of the subdifferential-three notions that have appeared in entirely different settings-are all essentially equivalent for any lower-semicontinuous, extended real-valued function.
引用
收藏
页码:256 / 267
页数:12
相关论文
共 16 条
[1]  
Artacho FJA, 2008, J CONVEX ANAL, V15, P365
[2]  
Bonnans J.F., 2013, PERTURBATION ANAL OP
[3]  
Borwein Jonathan, 2005, CMS Books in Mathematics
[4]  
Hiriart-Urruty J.-B., 1993, Convex Analysis and Minimization Algorithms I: Fundamentals, V305
[5]   Metric regularity and subdifferential calculus [J].
Ioffe, AD .
RUSSIAN MATHEMATICAL SURVEYS, 2000, 55 (03) :501-558
[6]   PARTIAL SMOOTHNESS, TILT STABILITY, AND GENERALIZED HESSIANS [J].
Lewis, A. S. ;
Zhang, S. .
SIAM JOURNAL ON OPTIMIZATION, 2013, 23 (01) :74-94
[7]   SECOND-ORDER SUBDIFFERENTIAL CALCULUS WITH APPLICATIONS TO TILT STABILITY IN OPTIMIZATION [J].
Mordukhovich, B. S. ;
Rockafellar, R. T. .
SIAM JOURNAL ON OPTIMIZATION, 2012, 22 (03) :953-986
[8]  
MORDUKHOVICH BS, 2005, GRUNDLEHREN MATH WIS, V330
[9]  
MORDUKHOVICH BS, 2005, GRUNDLEHREN MATH WIS, V331
[10]  
Poliquin RA, 2010, J CONVEX ANAL, V17, P203