Potential Applications of the Escherichia coli Heat Shock Response in Synthetic Biology

被引:32
|
作者
Rodrigues, Joana L. [1 ]
Rodrigues, Ligia R. [1 ]
机构
[1] Univ Minho, Ctr Biol Engn, Campus Gualtar, P-4710057 Braga, Portugal
关键词
RECOMBINANT PROTEIN-PRODUCTION; GENE-EXPRESSION; RNA THERMOMETERS; TRANSCRIPTIONAL RESPONSE; HETEROLOGOUS PRODUCTION; CAFFEIC ACID; STRESS; DESIGN; SIGMA(32); DEGRADATION;
D O I
10.1016/j.tibtech.2017.10.014
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The Escherichia coli heat shock response (HSR) is a complex mechanism triggered by heat shock and by a variety of other growth-impairing stresses. We explore here the potential use of the E. coli HSR mechanism in synthetic biology approaches. Several components of the regulatory mechanism (such as heat shock promoters, proteins, and RNA thermosensors) can be extremely valuable in the creation of a toolbox of well-characterized biological parts to construct biosensors or microbial cell factories with applications in the environment, industry, or healthcare. In the future, these systems can be used for instance to detect a pollutant in water, to regulate and optimize the production of a compound with industrial relevance, or to administer a therapeutic agent in vivo.
引用
收藏
页码:186 / 198
页数:13
相关论文
共 50 条
  • [41] Biofuel production in Escherichia coli: the role of metabolic engineering and synthetic biology
    James M. Clomburg
    Ramon Gonzalez
    Applied Microbiology and Biotechnology, 2010, 86 : 419 - 434
  • [42] Biofuel production in Escherichia coli: the role of metabolic engineering and synthetic biology
    Clomburg, James M.
    Gonzalez, Ramon
    APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2010, 86 (02) : 419 - 434
  • [43] Expanding the toolbox of probiotic Escherichia coli Nissle 1917 for synthetic biology
    Ba, Fang
    Zhang, Yufei
    Ji, Xiangyang
    Liu, Wan-Qiu
    Ling, Shengjie
    Li, Jian
    BIOTECHNOLOGY JOURNAL, 2024, 19 (01)
  • [44] YbeY, a Heat Shock Protein Involved in Translation in Escherichia coli
    Rasouly, Aviram
    Schonbrun, Miriam
    Shenhar, Yotam
    Ron, Eliora Z.
    JOURNAL OF BACTERIOLOGY, 2009, 191 (08) : 2649 - 2655
  • [45] Enhancement of the solubility of proteins overexpressed in Escherichia coli by heat shock
    Chen, JQ
    Acton, TB
    Basu, SK
    Montelione, GT
    Inouye, M
    JOURNAL OF MOLECULAR MICROBIOLOGY AND BIOTECHNOLOGY, 2002, 4 (06) : 519 - 524
  • [46] RIBOSOMES AS SENSORS OF HEAT AND COLD SHOCK IN ESCHERICHIA-COLI
    VANBOGELEN, RA
    NEIDHARDT, FC
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1990, 87 (15) : 5589 - 5593
  • [47] THE HEAT-SHOCK RESPONSE OF ESCHERICHIA-COLI IS REGULATED BY CHANGES IN THE CONCENTRATION OF SIGMA-32
    STRAUS, DB
    WALTER, WA
    GROSS, CA
    NATURE, 1987, 329 (6137) : 348 - 351
  • [48] SUPPRESSION OF RPOH (HTPR) MUTATIONS OF ESCHERICHIA-COLI - HEAT-SHOCK RESPONSE IN SUHA REVERTANTS
    TOBE, T
    KUSUKAWA, N
    YURA, T
    JOURNAL OF BACTERIOLOGY, 1987, 169 (09) : 4128 - 4134
  • [49] Nonnative Disulfide Bond Formation Activates the σ32-Dependent Heat Shock Response in Escherichia coli
    Mueller, Alexandra
    Hoffmann, Joerg H.
    Meyer, Helmut E.
    Narberhaus, Franz
    Jakob, Ursula
    Leichert, Lars I.
    JOURNAL OF BACTERIOLOGY, 2013, 195 (12) : 2807 - 2816
  • [50] Gut myoelectrical activity induces heat shock response in Escherichia coli and Caco-2 cells
    Laubitz, Daniel
    Jankowska, Alicja
    Sikora, Anna
    Wolinski, Jaroslaw
    Zabielski, Romuald
    Grzesiuk, Elzbieta
    EXPERIMENTAL PHYSIOLOGY, 2006, 91 (05) : 867 - 875