New exact solutions for the (2+1)-dimensional Sawada-Kotera equation

被引:14
作者
Shi, Yeqiong [1 ]
Li, Donglong [1 ]
机构
[1] Guangxi Univ Technol, Dept Informat & Comp Sci, Liuzhou 545006, Peoples R China
关键词
The three-wave method; The (2+1)-dimensional Sawada-Kotera equation; Dark periodic soliton wave solution; Dark two-soliton solutions; NONLINEAR EVOLUTION-EQUATIONS; HOMOTOPY PERTURBATION METHOD; TRAVELING-WAVE SOLUTIONS; EXP-FUNCTION METHOD; F-EXPANSION METHOD; BOUSSINESQ EQUATION; PERIODIC SOLITONS; EVEN CONSTRAINT; BIFURCATION;
D O I
10.1016/j.compfluid.2012.08.005
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A new test function is proposed to construct new exact solitary solution for nonlinear evolution equation. The (2 + 1)-dimensional Sawada-Kotera equation is employed as an example to illustrate the effectiveness of the suggested method and some new wave solutions with three different velocities and frequencies are obtained. Obviously, the method can be applied to solve other type of nonlinear evolution equations as well. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:88 / 93
页数:6
相关论文
共 23 条
  • [1] Cao CW, 2008, COMMUN THEOR PHYS, V49, P31, DOI 10.1088/0253-6102/49/1/06
  • [2] Dai ZD, 2006, CHINESE PHYS LETT, V23, P1065, DOI 10.1088/0256-307X/23/5/001
  • [3] Homoclinic orbits and periodic solitons for Boussinesq equation with even constraint
    Dai, ZD
    Huang, J
    Jiang, MR
    Wang, S
    [J]. CHAOS SOLITONS & FRACTALS, 2005, 26 (04) : 1189 - 1194
  • [4] Dai ZD., 2010, Nonlinear Sci. Lett. A, V1, P77
  • [5] Periodic kink-wave and kinky periodic-wave solutions for the Jimbo-Miwa equation
    Dai, Zhengde
    Liu, Jun
    Zeng, Xiping
    Liu, Zhenjiang
    [J]. PHYSICS LETTERS A, 2008, 372 (38) : 5984 - 5986
  • [6] Applications of HTA and EHTA to YTSF Equation
    Dai, Zhengde
    Liu, Jun
    Li, Donglong
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2009, 207 (02) : 360 - 364
  • [7] El-Shahed M, 2005, INT J NONLIN SCI NUM, V6, P163
  • [8] Exact travelling wave solutions for two nonlinear evolution equations using the improved F-expansion method
    Elhanbaly, A.
    Abdou, M. A.
    [J]. MATHEMATICAL AND COMPUTER MODELLING, 2007, 46 (9-10) : 1265 - 1276
  • [9] Homotopy perturbation method for bifurcation of nonlinear problems
    He, JH
    [J]. INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2005, 6 (02) : 207 - 208
  • [10] Exp-function method for nonlinear wave equations
    He, Ji-Huan
    Wu, Xu-Hong
    [J]. CHAOS SOLITONS & FRACTALS, 2006, 30 (03) : 700 - 708