Monotone operator theory for unsteady problems in variable exponent spaces

被引:63
作者
Diening, L. [2 ]
Naegele, P. [1 ]
Ruzicka, M. [1 ]
机构
[1] Univ Freiburg, Math Inst, Eckerstr 1, D-79104 Freiburg, Germany
[2] Univ Munich, Math Inst, D-80333 Munich, Germany
关键词
variable exponent spaces; monotone operator; PARABOLIC EQUATIONS; SOBOLEV SPACES; LEBESGUE;
D O I
10.1080/17476933.2011.557157
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce function spaces for the treatment of parabolic equations with variable exponents by means of the theory of monotone operators. We generalize classical results such as density of smooth functions and a formula for integration by parts to prove existence, uniqueness and L-2-continuity of weak solutions to parabolic equations involving elliptic operators A with p(tau, x)-structure, where p is a globally log-Holder continuous variable exponent satisfying 1 < p(-) <= p(+) < infinity.
引用
收藏
页码:1209 / 1231
页数:23
相关论文
共 35 条
[1]   Regularity results for electrorheological fluids: the stationary case [J].
Acerbi, E ;
Mingione, G .
COMPTES RENDUS MATHEMATIQUE, 2002, 334 (09) :817-822
[2]   Regularity results for a class of functionals with non-standard growth [J].
Acerbi, E ;
Mingione, G .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2001, 156 (02) :121-140
[3]  
Acerbi E., 2000, MAT APPL, V11, P169
[4]  
Adams R., 1985, Sobolev Spaces
[5]   Existence theorems for solutions of parabolic equations with variable order of nonlinearity [J].
Alkhutov, Yu. A. ;
Zhikov, V. V. .
PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2010, 270 (01) :15-26
[6]  
[Anonymous], 1995, RUSSIAN J MATH PHYS
[7]  
Antontsev S, 2007, INT SER NUMER MATH, V154, P33
[8]   ANISOTROPIC PARABOLIC EQUATIONS WITH VARIABLE NONLINEARITY [J].
Antontsev, S. ;
Shmarev, S. .
PUBLICACIONS MATEMATIQUES, 2009, 53 (02) :355-399
[9]  
Cruz-Uribe D, 2006, ANN ACAD SCI FENN-M, V31, P239
[10]  
Cruz-Uribe D., 2009, Boll. Unione Mat. Ital. (9), V2, P151