Data-Driven Discovery of Active Nematic Hydrodynamics

被引:0
|
作者
Joshi, Chaitanya [1 ,2 ]
Ray, Sattvic [3 ]
Lemma, Linnea M. [1 ,3 ]
Varghese, Minu [1 ,4 ]
Sharp, Graham [3 ]
Dogic, Zvonimir [3 ]
Baskaran, Aparna [1 ]
Hagan, Michael F. [1 ]
机构
[1] Brandeis Univ, Dept Phys, Waltham, MA 02453 USA
[2] Tufts Univ, Dept Phys & Astron, Medford, MA 02155 USA
[3] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA
[4] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会;
关键词
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Active nematics can be modeled using phenomenological continuum theories that account for the dynamics of the nematic director and fluid velocity through partial differential equations (PDEs). While these models provide a statistical description of the experiments, the relevant terms in the PDEs and their parameters are usually identified indirectly. We adapt a recently developed method to automatically identify optimal continuum models for active nematics directly from spatiotemporal data, via sparse regression of the coarse-grained fields onto generic low order PDEs. After extensive benchmarking, we apply the method to experiments with microtubule-based active nematics, finding a surprisingly minimal description of the system. Our approach can be generalized to gain insights into active gels, microswimmers, and diverse other experimental active matter systems.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Data-Driven Discovery of Active Nematic Hydrodynamics
    Joshi, Chaitanya
    Ray, Sattvic
    Lemma, Linnea M.
    Varghese, Minu
    Sharp, Graham
    Dogic, Zvonimir
    Baskaran, Aparna
    Hagan, Michael F.
    PHYSICAL REVIEW LETTERS, 2022, 129 (25)
  • [2] A data-driven statistical description for the hydrodynamics of active matter
    Borzou, Ahmad
    Patteson, Alison E.
    Schwarz, J. M.
    NEW JOURNAL OF PHYSICS, 2021, 23 (10):
  • [3] Data-driven discovery of quasiperiodically driven dynamics
    Das, Suddhasattwa
    Mustavee, Shakib
    Agarwal, Shaurya
    NONLINEAR DYNAMICS, 2025, 113 (05) : 4097 - 4120
  • [4] Data-driven drug discovery by AI
    Miyano, Satoru
    Jinzaki, Masahiro
    CANCER SCIENCE, 2022, 113 : 1376 - 1376
  • [5] Computational Data-Driven Materials Discovery
    Mannodi-Kanakkithodi, Arun
    Chan, Maria K. Y.
    TRENDS IN CHEMISTRY, 2021, 3 (02): : 79 - 82
  • [6] Data-driven discovery of causal interactions
    Ma, Saisai
    Liu, Lin
    Li, Jiuyong
    Thuc Duy Le
    INTERNATIONAL JOURNAL OF DATA SCIENCE AND ANALYTICS, 2019, 8 (03) : 285 - 297
  • [7] Data-driven analysis in drug discovery
    Kenakin, Terry
    JOURNAL OF RECEPTORS AND SIGNAL TRANSDUCTION, 2006, 26 (04) : 299 - 327
  • [8] Data-Driven Discovery of Closure Models
    Pan, Shaowu
    Duraisamy, Karthik
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2018, 17 (04): : 2381 - 2413
  • [9] DATA-DRIVEN DISCOVERY OF PHYSICAL LAWS
    LANGLEY, P
    COGNITIVE SCIENCE, 1981, 5 (01) : 31 - 54
  • [10] Data-driven discovery of invariant measures
    Bramburger, Jason J.
    Fantuzzi, Giovanni
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2024, 480 (2286):