Variational chemical data assimilation with approximate adjoints

被引:4
作者
Singh, Kumaresh [1 ]
Sandu, Adrian [1 ]
机构
[1] Virginia Polytech Inst & State Univ, Dept Comp Sci, Sci Computat Lab, Blacksburg, VA 24060 USA
基金
美国国家科学基金会;
关键词
Data assimilation; Simplified adjoint model; AIR-QUALITY; METEOROLOGICAL OBSERVATIONS; SENSITIVITY-ANALYSIS; KALMAN FILTER; ALGORITHMS; MODELS; COLUMN;
D O I
10.1016/j.cageo.2011.07.003
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Data assimilation obtains improved estimates of the state of a physical system by combining imperfect model results with sparse and noisy observations of reality. In the four-dimensional variational (4D-Var) framework, data assimilation is formulated as an optimization problem, which is solved using gradient-based optimization methods. The 4D-Var gradient is obtained by forcing the adjoint model with observation increments. The construction of the adjoint model requires considerable development effort. Moreover, the computation time associated with the adjoint model is significant (typically, a multiple of the time needed to run the forward model). In this paper we investigate the use of approximate gradients in variational data assimilation. The approximate gradients need to be sufficiently accurate to ensure that the numerical optimization algorithm makes progress toward the maximum likelihood solution. The approximate gradients are obtained through simplified adjoint models; this decreases the adjoint development effort, and reduces the CPU time and the storage requirements associated with the computation of the 4D-Var gradient. The resulting approach, named quasi-4D-Var (Q4D-Var), is illustrated on a global chemical data assimilation problem using satellite observations and the GEOS-Chem chemical transport model. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:10 / 18
页数:9
相关论文
共 30 条
[11]  
Daley R., 1991, Atmospheric data analysis
[12]   Ozone episode analysis by four-dimensional variational chemistry data assimilation [J].
Elbern, H ;
Schmidt, H .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2001, 106 (D4) :3569-3590
[13]   The ASSET intercomparison of ozone analyses: method and first results [J].
Geer, A. J. ;
Lahoz, W. A. ;
Bekki, S. ;
Bormann, N. ;
Errera, Q. ;
Eskes, H. J. ;
Fonteyn, D. ;
Jackson, D. R. ;
Juckes, M. N. ;
Massart, S. ;
Peuch, V. -H. ;
Rharmili, S. ;
Segers, A. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2006, 6 :5445-5474
[14]   Adjoint inverse modeling of black carbon during the Asian Pacific Regional Aerosol Characterization Experiment [J].
Hakami, A ;
Henze, DK ;
Seinfeld, JH ;
Chai, T ;
Tang, Y ;
Carmichael, GR ;
Sandu, A .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2005, 110 (D14) :1-17
[15]   Inverse modeling and mapping US air quality influences of inorganic PM2.5 precursor emissions using the adjoint of GEOS-Chem [J].
Henze, D. K. ;
Seinfeld, J. H. ;
Shindell, D. T. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2009, 9 (16) :5877-5903
[16]  
Kalnay, 2003, ATMOSPHERIC MODELING, DOI [DOI 10.1017/CBO9780511802270, 10.1017/CBO9780511802270]
[17]   Detection and remediation of stagnation in the Nelder-Mead algorithm using a sufficient decrease condition [J].
Kelley, CT .
SIAM JOURNAL ON OPTIMIZATION, 1999, 10 (01) :43-55
[18]  
Khattatov B.V., 2000, J GEOPHYS RES, V105, P29
[19]   Constraining tropospheric ozone column through data assimilation [J].
Lamarque, JF ;
Khattatov, BV ;
Gille, JC .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2002, 107 (D22)
[20]  
LEDIMET FX, 1986, TELLUS A, V38, P97, DOI 10.1111/j.1600-0870.1986.tb00459.x