Variational chemical data assimilation with approximate adjoints

被引:4
作者
Singh, Kumaresh [1 ]
Sandu, Adrian [1 ]
机构
[1] Virginia Polytech Inst & State Univ, Dept Comp Sci, Sci Computat Lab, Blacksburg, VA 24060 USA
基金
美国国家科学基金会;
关键词
Data assimilation; Simplified adjoint model; AIR-QUALITY; METEOROLOGICAL OBSERVATIONS; SENSITIVITY-ANALYSIS; KALMAN FILTER; ALGORITHMS; MODELS; COLUMN;
D O I
10.1016/j.cageo.2011.07.003
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Data assimilation obtains improved estimates of the state of a physical system by combining imperfect model results with sparse and noisy observations of reality. In the four-dimensional variational (4D-Var) framework, data assimilation is formulated as an optimization problem, which is solved using gradient-based optimization methods. The 4D-Var gradient is obtained by forcing the adjoint model with observation increments. The construction of the adjoint model requires considerable development effort. Moreover, the computation time associated with the adjoint model is significant (typically, a multiple of the time needed to run the forward model). In this paper we investigate the use of approximate gradients in variational data assimilation. The approximate gradients need to be sufficiently accurate to ensure that the numerical optimization algorithm makes progress toward the maximum likelihood solution. The approximate gradients are obtained through simplified adjoint models; this decreases the adjoint development effort, and reduces the CPU time and the storage requirements associated with the computation of the 4D-Var gradient. The resulting approach, named quasi-4D-Var (Q4D-Var), is illustrated on a global chemical data assimilation problem using satellite observations and the GEOS-Chem chemical transport model. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:10 / 18
页数:9
相关论文
共 30 条
[1]  
[Anonymous], 1971, OPTIMAL CONTROL SYST
[2]   Using 3DVAR data assimilation system to improve ozone simulations in the Mexico City basin [J].
Bei, N. ;
de Foy, B. ;
Lei, W. ;
Zavala, M. ;
Molina, L. T. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2008, 8 (24) :7353-7366
[3]   Predicting air quality: Improvements through advanced methods to integrate models and measurements [J].
Carmichael, Gregory R. ;
Sandu, Adrian ;
Chai, Tianfeng ;
Daescu, Dacian N. ;
Constantinescu, Emil M. ;
Tang, Youhua .
JOURNAL OF COMPUTATIONAL PHYSICS, 2008, 227 (07) :3540-3571
[4]   ON THE GLOBAL CONVERGENCE OF TRUST REGION ALGORITHMS USING INEXACT GRADIENT INFORMATION [J].
CARTER, RG .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1991, 28 (01) :251-265
[5]   Four-dimensional data assimilation experiments with International Consortium for Atmospheric Research on Transport and Transformation ozone measurements [J].
Chai, Tianfeng ;
Carmichael, Gregory R. ;
Tang, Youhua ;
Sandu, Adrian ;
Hardesty, Michael ;
Pilewskie, Peter ;
Whitlow, Sallie ;
Browell, Edward V. ;
Avery, Melody A. ;
Nedelec, Philippe ;
Merrill, John T. ;
Thompson, Anne M. ;
Williams, Eric .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2007, 112 (D12)
[6]   Regional NOx emission inversion through a four-dimensional variational approach using SCIAMACHY tropospheric NO2 column observations [J].
Chai, Tianfeng ;
Carmichael, Gregory R. ;
Tang, Youhua ;
Sandu, Adrian ;
Heckel, Andreas ;
Richter, Andreas ;
Burrows, John P. .
ATMOSPHERIC ENVIRONMENT, 2009, 43 (32) :5046-5055
[7]   Cross-tropopause fluxes of ozone using assimilation of MOZAIC observations in a global CTM [J].
Clark, H. L. ;
Cathala, M. -L. ;
Teyssedre, H. ;
Cammas, J. -P. ;
Peuch, V. -H. .
TELLUS SERIES B-CHEMICAL AND PHYSICAL METEOROLOGY, 2007, 59 (01) :39-49
[8]   Ensemble-based chemical data assimilation. I: General approach [J].
Constantinescu, Emil M. ;
Sandu, Adrian ;
Chai, Tianfeng ;
Carmichael, Gregory R. .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2007, 133 (626) :1229-1243
[9]   Assessment of ensemble-based chemical data assimilation in an idealized setting [J].
Constantinescu, Emil M. ;
Sandu, Adrian ;
Chai, Tianfeng ;
Carmichael, Gregory R. .
ATMOSPHERIC ENVIRONMENT, 2007, 41 (01) :18-36
[10]   VARIATIONAL ASSIMILATION OF METEOROLOGICAL OBSERVATIONS WITH THE ADJOINT VORTICITY EQUATION .2. NUMERICAL RESULTS [J].
COURTIER, P ;
TALAGRAND, O .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 1987, 113 (478) :1329-1347