Suitable Weak Solutions to the Navier-Stokes Equations of Compressible Viscous Fluids

被引:74
作者
Feireisl, Eduard [1 ]
Novotny, Antonin [2 ]
Sun, Yongzhong [3 ]
机构
[1] Acad Sci Czech Republ, Inst Math, CR-11567 Prague 1, Czech Republic
[2] Univ S Toulon Var, IMATH, F-83957 La Garde, France
[3] Nanjing Univ, Dept Math, Nanjing 210093, Jiangsu, Peoples R China
关键词
compressible Navier-Stokes system; weak-strong uniqueness; suitable weak solutions; BLOW-UP CRITERION; EXISTENCE; REGULARITY; UNIQUENESS;
D O I
10.1512/iumj.2011.60.4406
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce a class of suitable weak solutions to the Navier-Stokes system of equations governing the motion of a compressible viscous fluid. These solutions satisfy the relative entropy inequality introduced by several authors, and, in particular, they enjoy the weak-strong uniqueness property.
引用
收藏
页码:611 / 631
页数:21
相关论文
共 29 条
[1]  
[Anonymous], EXISTENCE SMOOTHNESS
[2]  
[Anonymous], 2002, CHAPMAN HALL CRC RES
[3]  
[Anonymous], 1994, Springer Tracts in Natural Philosophy
[4]  
[Anonymous], 2002, Topics in Mathematical Fluid Mechanics
[5]  
[Anonymous], 1969, Mathematics and Its Applications
[6]   From kinetic equations to multidimensional isentropic gas dynamics before shocks [J].
Berthelin, F ;
Vasseur, A .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2005, 36 (06) :1807-1835
[7]  
Choe HJ, 2003, J KOREAN MATH SOC, V40, P1031
[8]  
DAFERMOS CM, 1979, ARCH RATION MECH AN, V70, P167, DOI 10.1007/BF00250353
[9]   Regularity of weak solutions of the compressible isentropic Navier-Stokes equations [J].
Desjardins, B .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1997, 22 (5-6) :977-1008
[10]   ORDINARY DIFFERENTIAL-EQUATIONS, TRANSPORT-THEORY AND SOBOLEV SPACES [J].
DIPERNA, RJ ;
LIONS, PL .
INVENTIONES MATHEMATICAE, 1989, 98 (03) :511-547