Thermal characteristics of InP-based mid-infrared quantum cascade lasers at λ∼ 8.8 Aμm

被引:0
作者
Lee, Hee Kwan [1 ]
Yu, Jae Su [1 ]
机构
[1] Kyung Hee Univ, Inst Laser Engn, Dept Elect & Radio Engn, Yongin 446701, South Korea
关键词
Quantum cascade lasers; InGaAs/AlInAs; Thermal analysis; CONTINUOUS-WAVE OPERATION; ROOM-TEMPERATURE; HIGH-PERFORMANCE;
D O I
10.3938/jkps.60.1757
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We have theoretically investigated the thermal characteristics of double-channel ridge-waveguide InGaAs/AlInAs quantum cascade lasers (QCLs) emitting at lambda similar to 8.8 A mu m in comparison with the experimental results. Based on the measured data, the thermal parameters were obtained with heat source densities using a two-dimensional anisotropic heat dissipation model. For 21 A mu m x 4 mm QCLs, the thermal conductance (G (th) ) value was 215.5W/K-cm(2) at 298 K in continuous-wave (CW) operation. The G (th) value was significantly increased by using a buried heterostructure (BH) via the regrowth of undoped InP layer around the laser ridge. Also, an additional improvement in the G (th) was made by the use of a diamond submount, and the temperature dependency of the devices was largely decreased. The G (th) value was improved to 306.7 W/K-cm(2) at 298 K in the CW mode for epilayer-down bonded BH QCLs with an InP embedded layer on a diamond submount.
引用
收藏
页码:1757 / 1761
页数:5
相关论文
共 11 条
[1]   Room temperature continuous wave operation of quantum cascade lasers with watt-level optical power [J].
Bai, Y. ;
Darvish, S. R. ;
Slivken, S. ;
Zhang, W. ;
Evans, A. ;
Nguyen, J. ;
Razeghi, M. .
APPLIED PHYSICS LETTERS, 2008, 92 (10)
[2]   Thermal effects in InGaAs/AlAsSb quantum-cascade lasers [J].
Evans, C. A. ;
Jovanovic, V. D. ;
Indjin, D. ;
Ikonic, Z. ;
Harrison, P. .
IEE PROCEEDINGS-OPTOELECTRONICS, 2006, 153 (06) :287-292
[3]   QUANTUM CASCADE LASER [J].
FAIST, J ;
CAPASSO, F ;
SIVCO, DL ;
SIRTORI, C ;
HUTCHINSON, AL ;
CHO, AY .
SCIENCE, 1994, 264 (5158) :553-556
[4]   Thermal analysis of InP-based quantum cascade lasers for efficient heat dissipation [J].
Lee, H. K. ;
Chung, K. S. ;
Yu, J. S. .
APPLIED PHYSICS B-LASERS AND OPTICS, 2008, 93 (04) :779-786
[5]   Thermal modeling of GaInAs/AlInAs quantum cascade lasers [J].
Lops, Antonia ;
Spagnolo, Vincenzo ;
Scamarcio, Gaetano .
JOURNAL OF APPLIED PHYSICS, 2006, 100 (04)
[6]   Interferometric study of thermal dynamics in GaAs-based quantum-cascade lasers [J].
Pflügl, C ;
Litzenberger, M ;
Schrenk, W ;
Pogany, D ;
Gornik, E ;
Strasser, G .
APPLIED PHYSICS LETTERS, 2003, 82 (11) :1664-1666
[7]   Ridge-width dependence on high-temperature continuous-wave quantum-cascade laser operation [J].
Slivken, S ;
Yu, JS ;
Evans, A ;
David, J ;
Doris, L ;
Razeghi, M .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2004, 16 (03) :744-746
[8]   High-performance, continuous-wave quantum-cascade lasers operating up to 85°C at λ ∼8.8 μm [J].
Yu, J. S. ;
Slivken, S. ;
Evans, A. ;
Razeghi, M. .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2008, 93 (02) :405-408
[9]   High-performance continuous-wave operation of λ ∼ 4.6 μm quantum-cascade lasers above room temperature [J].
Yu, Jae Su ;
Slivken, Steven ;
Evans, Allan J. ;
Razeghi, Manijeh .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 2008, 44 (7-8) :747-754
[10]   High-power continuous-wave operation of a 6 μm quantum-cascade laser at room temperature [J].
Yu, JS ;
Slivken, S ;
Evans, A ;
Doris, L ;
Razeghi, M .
APPLIED PHYSICS LETTERS, 2003, 83 (13) :2503-2505