Rational construction of plasmon Au assisted ferroelectric-BaTiO3/Au/g-C3N4 Z-scheme system for efficient photocatalysis

被引:58
作者
Wu, Moqing [1 ]
Ding, Tong [1 ]
Wang, Yating [1 ]
Zhao, Wanyue [1 ]
Xian, Hui [2 ]
Tian, Ye [1 ]
Zhang, Tianyong [1 ]
Li, Xingang [1 ]
机构
[1] Tianjin Univ, Collaborat Innovat Ctr Chem Sci & Engn, Sch Chem Engn & Technol, Tianjin Key Lab Appl Catalysis Sci & Engn, Tianjin 300072, Peoples R China
[2] Tianjin Polytech Univ, Sch Continuing Educ, Tianjin 300387, Peoples R China
基金
中国国家自然科学基金;
关键词
Z-scheme photocatalyts; g-C3N4; ferroelectric-BaTiO3; Surface plasmon resonance; GRAPHITIC CARBON NITRIDE; STATE Z-SCHEME; HYDROTHERMAL SYNTHESIS; NANOSHEETS; DEGRADATION; PERFORMANCE; FERROELECTRICITY; HETEROSTRUCTURE; HETEROJUNCTIONS; NANOPARTICLES;
D O I
10.1016/j.cattod.2019.04.061
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Application of Z-scheme heterojunction systems toward mimicking natural photosynthesis is an efficient methodology to improve solar energy conversion. Herein, we successfully develop a Z-scheme heterojunction photocatalyst by using Au nanoparticles as electron mediator to couple ferroelectric-BaTiO3 nanowires and g-C3N4. This rationally constructed Z-scheme system with the extra surface plasmon resonance (SPR) effect of Au nanoparticles and ferroelectricity of BaTiO3 shows the significantly enhanced generation and separation efficiency of photogenerated carriers and the high reduction ability of elections. Accordingly, it exhibits the high photocatalytic performance for both H-2 evolution and RhB degradation. In particular, its H-2 evolution rate is about 18 times to that of g-C3N4 alone. The reasonable interfacial charge transfer mechanism discovered in this work provides a new approach to understanding and designing other efficient Z-scheme heterojunction systems.
引用
收藏
页码:311 / 318
页数:8
相关论文
共 48 条
[1]   Ferroelectricity at the nanoscale: Local polarization in oxide thin films and heterostructures [J].
Ahn, CH ;
Rabe, KM ;
Triscone, JM .
SCIENCE, 2004, 303 (5657) :488-491
[2]   Graphene and TiO2 co-modified flower-like Bi2O2CO3. A novel multi-heterojunction photocatalyst with enhanced photocatalytic activity [J].
Ao, Yanhui ;
Xu, Liya ;
Wang, Peifang ;
Wang, Chao ;
Hou, Jun ;
Qian, Jin ;
Li, Yi .
APPLIED SURFACE SCIENCE, 2015, 355 :411-418
[3]   Composition Dependence of the Photochemical reduction of Ag by Ba1-xSrxTiO3 [J].
Bhardwaj, Abhilasha ;
Burbure, Nina V. ;
Gamalski, Andrew ;
Rohrer, Gregory S. .
CHEMISTRY OF MATERIALS, 2010, 22 (11) :3527-3534
[4]   A review on photocatalysis for air treatment: From catalyst development to reactor design [J].
Boyjoo, Yash ;
Sun, Hongqi ;
Liu, Jian ;
Pareek, Vishnu K. ;
Wang, Shaobin .
CHEMICAL ENGINEERING JOURNAL, 2017, 310 :537-559
[5]   Synergetic Enhancement of Light Harvesting and Charge Separation over Surface-Disorder-Engineered TiO2 Photonic Crystals [J].
Cai, Jinmeng ;
Wu, Moqing ;
Wang, Yating ;
Zhang, Hao ;
Meng, Ming ;
Tian, Ye ;
Li, Xingang ;
Zhang, Jing ;
Zheng, Lirong ;
Gong, Jinlong .
CHEM, 2017, 2 (06) :877-892
[6]   Fe-g-C3N4-Catalyzed Oxidation of Benzene to Phenol Using Hydrogen Peroxide and Visible Light [J].
Chen, Xiufang ;
Zhang, Jinshui ;
Fu, Xianzhi ;
Antonietti, Markus ;
Wang, Xinchen .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (33) :11658-+
[7]  
Clavero C, 2014, NAT PHOTONICS, V8, P95, DOI [10.1038/nphoton.2013.238, 10.1038/NPHOTON.2013.238]
[8]   Effect of Ferroelectricity on Solar-Light-Driven Photocatalytic Activity of BaTiO3-Influence on the Carrier Separation and Stern Layer Formation [J].
Cui, Yongfei ;
Briscoe, Joe ;
Dunn, Steve .
CHEMISTRY OF MATERIALS, 2013, 25 (21) :4215-4223
[9]   β-Cyclodextrin as a Precursor to Holey C-Doped g-C3N4 Nanosheets for Photocatalytic Hydrogen Generation [J].
Da Silva, Eliana S. ;
Moura, Nuno M. M. ;
Coutinho, Ana ;
Drazic, Goran ;
Teixeira, Bruno M. S. ;
Sobolev, Nikolai A. ;
Silva, Claudia G. ;
Neves, M. Graca P. M. S. ;
Prieto, Manuel ;
Faria, Joaquim L. .
CHEMSUSCHEM, 2018, 11 (16) :2681-2694
[10]   g-C3N4-Based Heterostructured Photocatalysts [J].
Fu, Junwei ;
Yu, Jiaguo ;
Jiang, Chuanjia ;
Cheng, Bei .
ADVANCED ENERGY MATERIALS, 2018, 8 (03)