Overexpression of TsGOLS2, a galactinol synthase, in Arabidopsis thaliana enhances tolerance to high salinity and osmotic stresses

被引:97
|
作者
Sun, Zhibin [1 ]
Qi, Xingyun [1 ]
Wang, Zenglan [1 ]
Li, Pinghua [1 ]
Wu, Chunxia [1 ]
Zhang, Hui [1 ]
Zhao, Yanxiu [1 ]
机构
[1] Shandong Normal Univ, Key Lab Plant Stress Res, Life Sci Coll, Jinan 250014, Peoples R China
关键词
Galactinol; alpha-Ketoglutaricacid; Overexpression; Raffinose; Stress tolerance; Thellungiella salsuginea; TsGOLS2; RAFFINOSE FAMILY OLIGOSACCHARIDES; SALT-TOLERANCE; CHLOROPHYLL FLUORESCENCE; THELLUNGIELLA-HALOPHILA; AJUGA-REPTANS; GENE FAMILY; EXPRESSION; SEEDS; DESICCATION; GERMINATION;
D O I
10.1016/j.plaphy.2013.04.009
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Galactinol synthase (GOLS, EC 2.4.1.123), a key enzyme in the synthesis of raffinose family oligosaccharides (RFOs), catalyzes the condensation of UDP-galactose with myo-inositol to produce galactinol as the sole donor for the synthesis of RFOs. RFOs have been implicated in mitigating effects of environmental stresses on plants. TsGOLS2, was cloned from Thellungiella salsuginea with high homology to AtGOLS2. TsGOLS2 was up-regulated by several abiotic stresses. We overexpressed TsGOLS2 in Arabidopsis thaliana. The contents of galactinol, raffinose, and alpha-ketoglutaric acid were significantly increased in transgenic plants. Compared to wild type plants, salt-stressed transgenic A. thaliana exhibited higher germination rate, photosynthesis ability, and seedling growth. After being treated with osmotic stress by high concentration of sorbitol, transgenic plants retained high germination rates and grew well during early development. These results indicated that overexpression of TsGOLS2 in A. thaliana improved the tolerance of transgenic plants to high salinity and osmotic stress. (C) 2013 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:82 / 89
页数:8
相关论文
共 50 条
  • [1] The overexpression in Arabidopsis thaliana of a Trichoderma harzianum gene that modulates glucosidase activity, and enhances tolerance to salt and osmotic stresses
    Hermosa, Rosa
    Botella, Leticia
    Keck, Emma
    Angel Jimenez, Jesus
    Montero-Barrientos, Marta
    Arbona, Vicent
    Gomez-Cadenas, Aurelio
    Monte, Enrique
    Nicolas, Carlos
    JOURNAL OF PLANT PHYSIOLOGY, 2011, 168 (11) : 1295 - 1302
  • [2] Overexpression of phytochelatin synthase AtPCS2 enhances salt tolerance in Arabidopsis thaliana
    Kim, Yeon-Ok
    Kang, Hunseung
    Ahn, Sung-Ju
    JOURNAL OF PLANT PHYSIOLOGY, 2019, 240
  • [3] Overexpression of an Arabidopsis thaliana galactinol synthase gene improves drought tolerance in transgenic rice and increased grain yield in the field
    Gomez Selvaraj, Michael
    Ishizaki, Takuma
    Valencia, Milton
    Ogawa, Satoshi
    Dedicova, Beata
    Ogata, Takuya
    Yoshiwara, Kyouko
    Maruyama, Kyonoshin
    Kusano, Miyako
    Saito, Kazuki
    Takahashi, Fuminori
    Shinozaki, Kazuo
    Nakashima, Kazuo
    Ishitani, Manabu
    PLANT BIOTECHNOLOGY JOURNAL, 2017, 15 (11) : 1465 - 1477
  • [4] Overexpression of StERECTA enhances drought tolerance in Arabidopsis thaliana
    Liu, Xuan
    Yang, Wenjing
    Zhang, Li
    Nie, Fengjie
    Gong, Lei
    Zhang, Hongxia
    JOURNAL OF PLANT PHYSIOLOGY, 2024, 303
  • [5] Overexpression of Arabidopsis ZEP enhances tolerance to osmotic stress
    Park, Hee-Yeon
    Seok, Hye-Yeon
    Park, Bo-Kyung
    Kim, Sun-Ho
    Goh, Chang-Hyo
    Lee, Byeong-ha
    Lee, Choon-Hwan
    Moon, Yong-Hwan
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2008, 375 (01) : 80 - 85
  • [6] Overexpression of wheat dehydrin DHN-5 enhances tolerance to salt and osmotic stress in Arabidopsis thaliana
    Brini, Faical
    Hanin, Moez
    Lumbreras, Victoria
    Amara, Imen
    Khoudi, Habib
    Hassairi, Afif
    Pages, Montserrat
    Masmoudi, Khaled
    PLANT CELL REPORTS, 2007, 26 (11) : 2017 - 2026
  • [7] Overexpression of a wheat phospholipase D gene, TaPLDα, enhances tolerance to drought and osmotic stress in Arabidopsis thaliana
    Wang, Junbin
    Ding, Bo
    Guo, Yaolin
    Li, Ming
    Chen, Shuaijun
    Huang, Guozhong
    Xie, Xiaodong
    PLANTA, 2014, 240 (01) : 103 - 115
  • [8] Overexpression of a wheat phospholipase D gene, TaPLDα, enhances tolerance to drought and osmotic stress in Arabidopsis thaliana
    Junbin Wang
    Bo Ding
    Yaolin Guo
    Ming Li
    Shuaijun Chen
    Guozhong Huang
    Xiaodong Xie
    Planta, 2014, 240 : 103 - 115
  • [9] Overexpression of wheat dehydrin DHN-5 enhances tolerance to salt and osmotic stress in Arabidopsis thaliana
    Faïçal Brini
    Moez Hanin
    Victoria Lumbreras
    Imen Amara
    Habib Khoudi
    Afif Hassairi
    Montserrat Pagès
    Khaled Masmoudi
    Plant Cell Reports, 2007, 26 : 2017 - 2026
  • [10] Overexpression of KvCHX Enhances Salt Tolerance in Arabidopsis thaliana Seedlings
    Guo, Yuqi
    Zhu, Chengrong
    Tian, Zengyuan
    CURRENT ISSUES IN MOLECULAR BIOLOGY, 2023, 45 (12) : 9692 - 9708