Numerical design of a 3D microfluidic systems for bioparticle analysis: electrostatic and dielectrophoretic simulations

被引:0
|
作者
Corman, Ramona [1 ,2 ]
Nedelcu, Oana [1 ]
Ravariu, Cristian [2 ]
机构
[1] Natl Inst Res & Dev Microtechnol IMT Bucharest, Voluntari, Romania
[2] Univ Politehn Bucuresti, Elect Devices Circuits & Architectures Dept, Fac Elect Telecommun & Informat Technol, Bucharest, Romania
来源
2016 39TH INTERNATIONAL SEMICONDUCTOR CONFERENCE (CAS) | 2016年
关键词
microfluidics; cell manipulation; electric field; electroporation; SEPARATION; CELLS;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Development of in vitro techniques for medical and industrial applications has introduced over the past few years modern devices for detecting and manipulation of biological probes. A major interest is granted for unicellular analysis in order to produce new techniques for cell membrane permeabilization. Microfluidics became an indispensable tool used in cell research and analysis. In this paper, we present a new device for cell manipulation, electroporation and observation. Dielectrophoresis (DEP) is used to transport the cells by dielectroforetic forces (FDEP). The influence of electric field and flow behavior is studied. The simulation results show the influence of flow and dielectrophoretic force on cells migration inside the microfluidics channel.
引用
收藏
页码:187 / 190
页数:4
相关论文
共 50 条
  • [41] Microfluidic techniques for development of 3D vascularized tissue
    Hasan, Anwarul
    Paul, Arghya
    Vrana, Nihal E.
    Zhao, Xin
    Memic, Adnan
    Hwang, Yu-Shik
    Dokmeci, Mehmet R.
    Khademhosseini, Ali
    BIOMATERIALS, 2014, 35 (26) : 7308 - 7325
  • [42] A 3D printed flow sensor for microfluidic applications
    Hawke, Adam
    Concilia, Gianmarco
    Thurgood, Peter
    Ahnood, Arman
    Baratchi, Sara
    Khoshmanesh, Khashayar
    SENSORS AND ACTUATORS A-PHYSICAL, 2023, 362
  • [43] Wax-bonding 3D microfluidic chips
    Gong, Xiuqing
    Yi, Xin
    Xiao, Kang
    Li, Shunbo
    Kodzius, Rimantas
    Qin, Jianhua
    Wen, Weijia
    LAB ON A CHIP, 2010, 10 (19) : 2622 - 2627
  • [44] Spatiotemporal Image Correlation Analysis for 3D Flow Field Mapping in Microfluidic Devices
    Ceffa, Nicolo G.
    Bouzin, Margaux
    D'Alfonso, Laura
    Sironi, Laura
    Marquezin, Cassia A.
    Auricchio, Ferdinando
    Marconi, Stefania
    Chirico, Giuseppe
    Collini, Maddalena
    ANALYTICAL CHEMISTRY, 2018, 90 (03) : 2277 - 2284
  • [45] 3D Printed Monolithic Device for the Microfluidic Capture, Perfusion, and Analysis of Multicellular Spheroids
    Markoski, Alex
    Wong, Ian Y.
    Borenstein, Jeffrey T.
    FRONTIERS IN MEDICAL TECHNOLOGY, 2021, 3
  • [46] Sequential assembly of 3D perfusable microfluidic hydrogels
    He, Jiankang
    Zhu, Lin
    Liu, Yaxiong
    Li, Dichen
    Jin, Zhongmin
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE, 2014, 25 (11) : 2491 - 2500
  • [47] Photogrammetric measurements of 3D printed microfluidic devices
    Guerra, M. G.
    Volpone, C.
    Galantucci, L. M.
    Percoco, G.
    ADDITIVE MANUFACTURING, 2018, 21 : 53 - 62
  • [48] Surface Bound Adsorption in a Microfluidic T-Sensor: Numerical Comparison and Optimization of 2D and 3D Models
    Winz, R. M.
    Wiechert, W.
    von Lieres, E.
    EUROSENSORS XXIV CONFERENCE, 2010, 5 : 1272 - 1275
  • [49] Numerical analysis of magnetic nanoparticle transport in microfluidic systems under the influence of permanent magnets
    Cao, Quanliang
    Han, Xiaotao
    Li, Liang
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2012, 45 (46)
  • [50] Microfluidic chip fabrication and performance analysis of 3D printed material for use in microfluidic nucleic acid amplification applications
    Tzivelekis, Charalampos
    Selby, Matthew P.
    Batet, Albert
    Madadi, Hojjat
    Dalgarno, Kenny
    JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2021, 31 (03)