Numerical design of a 3D microfluidic systems for bioparticle analysis: electrostatic and dielectrophoretic simulations

被引:0
|
作者
Corman, Ramona [1 ,2 ]
Nedelcu, Oana [1 ]
Ravariu, Cristian [2 ]
机构
[1] Natl Inst Res & Dev Microtechnol IMT Bucharest, Voluntari, Romania
[2] Univ Politehn Bucuresti, Elect Devices Circuits & Architectures Dept, Fac Elect Telecommun & Informat Technol, Bucharest, Romania
来源
2016 39TH INTERNATIONAL SEMICONDUCTOR CONFERENCE (CAS) | 2016年
关键词
microfluidics; cell manipulation; electric field; electroporation; SEPARATION; CELLS;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Development of in vitro techniques for medical and industrial applications has introduced over the past few years modern devices for detecting and manipulation of biological probes. A major interest is granted for unicellular analysis in order to produce new techniques for cell membrane permeabilization. Microfluidics became an indispensable tool used in cell research and analysis. In this paper, we present a new device for cell manipulation, electroporation and observation. Dielectrophoresis (DEP) is used to transport the cells by dielectroforetic forces (FDEP). The influence of electric field and flow behavior is studied. The simulation results show the influence of flow and dielectrophoretic force on cells migration inside the microfluidics channel.
引用
收藏
页码:187 / 190
页数:4
相关论文
共 50 条
  • [21] Continuous microfluidic 3D focusing enabling microflow cytometry for single-cell analysis
    Yan, Sheng
    Yuan, Dan
    TALANTA, 2021, 221 (221)
  • [22] A practical microfluidic pump enabled by acoustofluidics and 3D printing
    Ozcelik, Adem
    Aslan, Zeynep
    MICROFLUIDICS AND NANOFLUIDICS, 2021, 25 (01)
  • [23] A microfluidic platform for drug screening in a 3D cancer microenvironment
    Pandya, Hardik J.
    Dhingra, Karan
    Prabhakar, Devbalaji
    Chandrasekar, Vineethkrishna
    Natarajan, Siva Kumar
    Vasan, Anish S.
    Kulkarni, Ashish
    Shafiee, Hadi
    BIOSENSORS & BIOELECTRONICS, 2017, 94 : 632 - 642
  • [24] From Cell Culture to Biosensors 3D Printing of miniaturized and microfluidic Systems
    Enders, Anton
    Bahnemann, Janina
    CHEMIE IN UNSERER ZEIT, 2022, 56 (05) : 286 - 296
  • [25] NUMERICAL DESIGN STUDY OF CONTINUOUS SEPARATION OF BLOOD CELLS IN A MICROFLUIDIC DEVICE USING COMBINED DIELECTROPHORETIC AND HYDRODYNAMIC FORCES
    Bahrami, S.
    Feali, M. S.
    JOURNAL OF APPLIED MECHANICS AND TECHNICAL PHYSICS, 2022, 63 (02) : 240 - 250
  • [26] Numerical Analysis of Microfluidic Gold Electrode Array for Dielectrophoretic Characterization of U87 Glioma Cells
    Sharbati, Pouya
    Elitas, Meltem
    2022 MEDICAL TECHNOLOGIES CONGRESS (TIPTEKNO'22), 2022,
  • [27] Inkjet 3D Printed Microfluidic Devices
    Adamski, Krzysztof
    Kubicki, Wojciech
    Walczak, Rafal
    PROCEEDINGS OF THE 23RD INTERNATIONAL CONFERENCE ON MIXED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS (MIXDES 2016), 2016, : 504 - 506
  • [28] NUMERICAL DESIGN STUDY OF CONTINUOUS SEPARATION OF BLOOD CELLS IN A MICROFLUIDIC DEVICE USING COMBINED DIELECTROPHORETIC AND HYDRODYNAMIC FORCES
    S. Bahrami
    M. S. Feali
    Journal of Applied Mechanics and Technical Physics, 2022, 63 : 240 - 250
  • [29] Functional 3D Printing for Microfluidic Chips
    Weisgrab, Gregor
    Ovsionikov, Aleksandr
    Costa, Pedro F.
    ADVANCED MATERIALS TECHNOLOGIES, 2019, 4 (10)
  • [30] 3D Printing Solutions for Microfluidic Chip-To-World Connections
    van den Driesche, Sander
    Lucklum, Frieder
    Bunge, Frank
    Vellekoop, Michael J.
    MICROMACHINES, 2018, 9 (02):