Intelligent feature engineering and ontological mapping of brain tumour histomorphologies by deep learning

被引:35
作者
Faust, Kevin [1 ,2 ]
Bala, Sudarshan [1 ]
van Ommeren, Randy [3 ]
Portante, Alessia [1 ]
Al Qawahmed, Raniah [4 ]
Djuric, Ugljesa [1 ]
Diamandis, Phedias [1 ,3 ,4 ]
机构
[1] MacFeeters Hamilton Brain Tumour Ctr, Princess Margaret Canc Ctr, Toronto, ON, Canada
[2] Univ Toronto, Dept Comp Sci, Toronto, ON, Canada
[3] Univ Toronto, Dept Lab Med & Pathobiol, Toronto, ON, Canada
[4] Univ Hlth Network, Lab Med Program, Toronto, ON, Canada
关键词
CLASSIFICATION;
D O I
10.1038/s42256-019-0068-6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Neural networks are a promising digital pathology tool but are often criticized for their limited explainability. Faust and others demonstrate how machine-learned features correlate with human-understandable histological patterns and groupings, permitting increased transparency of deep learning tools in medicine. Deep learning is an emerging transformative tool in diagnostic medicine, yet limited access and the interpretability of learned parameters hinders widespread adoption. Here we have generated a diverse repository of 838,644 histopathologic images and used them to optimize and discretize learned representations into 512-dimensional feature vectors. Importantly, we show that individual machine-engineered features correlate with salient human-derived morphologic constructs and ontological relationships. Deciphering the overlap between human and machine reasoning may aid in eliminating biases and improving automation and accountability for artificial intelligence-assisted medicine.
引用
收藏
页码:316 / 321
页数:6
相关论文
共 18 条
[1]   Intraobserver and Interobserver Variability in the Assessment of Dysplasia in Ampullary Mucosal Biopsies [J].
Allard, Felicia D. ;
Goldsmith, Jeffrey D. ;
Ayata, Gamze ;
Challies, Tracy L. ;
Najarian, Robert M. ;
Nasser, Imad A. ;
Wang, Helen ;
Yee, Eric U. .
AMERICAN JOURNAL OF SURGICAL PATHOLOGY, 2018, 42 (08) :1095-1100
[2]   Comprehensive, Integrative Genomic Analysis of Diffuse Lower-Grade Gliomas [J].
Brat, Daniel J. ;
Verhaak, Roel G. W. ;
Al-dape, Kenneth D. ;
Yung, W. K. Alfred ;
Salama, Sofie R. ;
Cooper, Lee A. D. ;
Rheinbay, Esther ;
Miller, C. Ryan ;
Vitucci, Mark ;
Morozova, Olena ;
Robertson, A. Gordon ;
Noushmehr, Houtan ;
Laird, Peter W. ;
Cherniack, Andrew D. ;
Akbani, Rehan ;
Huse, Jason T. ;
Ciriello, Giovanni ;
Poisson, Laila M. ;
Barnholtz-Sloan, Jill S. ;
Berger, Mitchel S. ;
Brennan, Cameron ;
Colen, Rivka R. ;
Colman, Howard ;
Flanders, Adam E. ;
Giannini, Caterina ;
Grifford, Mia ;
Iavarone, Antonio ;
Jain, Rajan ;
Joseph, Isaac ;
Kim, Jaegil ;
Kasaian, Katayoon ;
Mikkelsen, Tom ;
Murray, Bradley A. ;
O'Neill, Brian Patrick ;
Pachter, Lior ;
Parsons, Donald W. ;
Sougnez, Carrie ;
Sulman, Erik P. ;
Vandenberg, Scott R. ;
Van Meir, Erwin G. ;
von Deimling, Andreas ;
Zhang, Hailei ;
Crain, Daniel ;
Lau, Kevin ;
Mallery, David ;
Morris, Scott ;
Paulauskis, Joseph ;
Penny, Robert ;
Shelton, Troy ;
Sherman, Mark .
NEW ENGLAND JOURNAL OF MEDICINE, 2015, 372 (26) :2481-2498
[3]   Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning [J].
Coudray, Nicolas ;
Ocampo, Paolo Santiago ;
Sakellaropoulos, Theodore ;
Narula, Navneet ;
Snuderl, Matija ;
Fenyo, David ;
Moreira, Andre L. ;
Razavian, Narges ;
Tsirigos, Aristotelis .
NATURE MEDICINE, 2018, 24 (10) :1559-+
[4]  
Doshi-Velez Finale, 2017, ARXIV
[5]   Dermatologist-level classification of skin cancer with deep neural networks [J].
Esteva, Andre ;
Kuprel, Brett ;
Novoa, Roberto A. ;
Ko, Justin ;
Swetter, Susan M. ;
Blau, Helen M. ;
Thrun, Sebastian .
NATURE, 2017, 542 (7639) :115-+
[6]   Visualizing histopathologic deep learning classification and anomaly detection using nonlinear feature space dimensionality reduction [J].
Faust, Kevin ;
Xie, Quin ;
Han, Dominick ;
Goyle, Kartikay ;
Volynskaya, Zoya ;
Djuric, Ugljesa ;
Diamandis, Phedias .
BMC BIOINFORMATICS, 2018, 19
[7]   Pathologist interobserver variability of histologic features in childhood brain tumors: Results from the CCG-945 study [J].
Gilles, Floyd H. ;
Tavare, C. Jane ;
Becker, Laurence E. ;
Burger, Peter C. ;
Yates, Allan J. ;
Pollack, Ian F. ;
Finlay, Jonathan L. .
PEDIATRIC AND DEVELOPMENTAL PATHOLOGY, 2008, 11 (02) :108-117
[8]   Causability and explainability of artificial intelligence in medicine [J].
Holzinger, Andreas ;
Langs, Georg ;
Denk, Helmut ;
Zatloukal, Kurt ;
Mueller, Heimo .
WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY, 2019, 9 (04)
[9]   A new nonparametric approach to galaxy morphological classification [J].
Lotz, JM ;
Primack, J ;
Madau, P .
ASTRONOMICAL JOURNAL, 2004, 128 (01) :163-182
[10]   The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary [J].
Louis, David N. ;
Perry, Arie ;
Reifenberger, Guido ;
von Deimling, Andreas ;
Figarella-Branger, Dominique ;
Cavenee, Webster K. ;
Ohgaki, Hiroko ;
Wiestler, Otmar D. ;
Kleihues, Paul ;
Ellison, David W. .
ACTA NEUROPATHOLOGICA, 2016, 131 (06) :803-820