Explicit and exact traveling wave solutions to the nonlinear LC circuit equation

被引:0
|
作者
Shang Ya-Dong [1 ,2 ]
Huang Yong [3 ]
机构
[1] Guangzhou Univ, Sch Math & Informat Sci, Guangzhou 510006, Guangdong, Peoples R China
[2] Guangzhou Univ, Key Lab Math & Interdisciplinary Sci, Guangdong Higher Educ Inst, Guangzhou 510006, Guangdong, Peoples R China
[3] Guangzhou Univ, Sch Comp Sci & Educ Software, Guangzhou 510006, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
nonlinear LC circuit; nonlinear dissipation wave equation; shock wave; periodic wave; HYPERBOLIC FUNCTION-METHOD; INHOMOGENEOUS ELECTRIC-CIRCUIT; HIGHER-ORDER SOLUTION; NON-LINEAR LATTICE; SOLITARY WAVE; TODA LATTICE; ZAKHAROV EQUATIONS; SHOCK-WAVE; EVOLUTION-EQUATIONS; BURGERS-EQUATION;
D O I
10.7498/aps.62.070203
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Traveling wave in a nonlinear LC circuit with dissipation have been investigated theoretically. With the aid of the extended hyperbolic function method,developed by the authors in recent works to solve nonlinear partial differential equations exactly, the fourth order nonlinear wave equation with dissipation, which models shock wave propagation in a nonlinear LC circuit, have been analytically studied. Abundant explicit and exact traveling wave solutions to the fourth order nonlinear wave equation with dissipation are obtained. These solutions include exact shock wave solutions, singular traveling wave solutions, and periodic wave solutions in a rational form of trigonometric functions.
引用
收藏
页数:9
相关论文
共 45 条
  • [1] Experiment on shock wave in a random LC circuit
    Asano, H
    Kakei, S
    Ishiwata, S
    Watanabe, S
    [J]. JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1999, 68 (10) : 3208 - 3213
  • [2] Chen Y, 2004, COMMUN THEOR PHYS, V41, P1
  • [3] Exact travelling wave solutions of nonlinear evolution equations in (1+1) and (2+1) dimensions
    Chen, YZ
    Ding, XW
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2005, 61 (06) : 1005 - 1013
  • [4] Traveling wave behavior for a generalized fisher equation
    Feng, Zhaosheng
    [J]. CHAOS SOLITONS & FRACTALS, 2008, 38 (02) : 481 - 488
  • [5] Complex traveling wave solutions to the Fisher equation
    Feng, Zhaosheng
    Li, Yang
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2006, 366 (01) : 115 - 123
  • [6] Note on solving solitary wave solution by the hyperbolic function method
    Guo, GP
    Zhang, JF
    [J]. ACTA PHYSICA SINICA, 2002, 51 (06) : 1159 - 1162
  • [7] SHOCK-WAVES IN THE DISSIPATIVE TODA LATTICE
    HIETARINTA, J
    KUUSELA, T
    MALOMED, BA
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (11): : 3015 - 3024
  • [8] Extended hyperbolic function method and new exact solitary wave solutions of Zakharov equations
    Huang, DJ
    Zhang, HQ
    [J]. ACTA PHYSICA SINICA, 2004, 53 (08) : 2434 - 2438
  • [9] Huang Y, 2012, J APPL MATH, V2012
  • [10] EXPERIMENT ON SOLITARY WAVE IN A SYMMETRIC ELECTRIC-CIRCUIT
    ISHIWATA, S
    WATANABE, S
    TANACA, H
    [J]. JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1990, 59 (04) : 1163 - 1172