Symmetry and symmetry breaking for ground state solutions of some strongly coupled elliptic systems

被引:20
作者
Bonheure, Denis [2 ]
dos Santos, Ederson Moreira [3 ]
Ramos, Miguel [1 ]
机构
[1] Univ Lisbon, CMAF, Fac Sci, P-1649003 Lisbon, Portugal
[2] Univ Libre Bruxelles, Dept Math, B-1050 Brussels, Belgium
[3] Univ Sao Paulo, Inst Ciencias Matemat & Comp, BR-13560970 Sao Carlos, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Hamiltonian elliptic systems; Henon weights; Supercritical problems; Schwarz foliated symmetry; Symmetry breaking; Ground state solution; ASYMPTOTIC-BEHAVIOR; DIRICHLET PROBLEM; HENON EQUATION;
D O I
10.1016/j.jfa.2012.10.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the ground state solutions of the Lane-Emden system with Henon-type weights -Delta u = vertical bar x vertical bar(beta)vertical bar nu vertical bar(q-1)nu,-Delta u = vertical bar x vertical bar(alpha)vertical bar u vertical bar(p-1) u in the unit ball B of R-N with Dirichlet boundary conditions, where N >= 1, alpha, beta >= 0, p, q > 0 and 1/(p + 1) + 1/(q + 1) > (N - 2)/N. We show that such ground state solutions u, u always have definite sign in B and exhibit a foliated Schwarz symmetry with respect to a unit vector of R-N. We also give precise conditions on the parameters alpha, beta, p and q under which the ground state solutions are not radially symmetric. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:62 / 96
页数:35
相关论文
共 31 条
[1]   Singularly perturbed elliptic systems [J].
Alves, CO ;
Soares, SHM .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2006, 64 (01) :109-129
[2]   Partial symmetry of least energy nodal solutions to some variational problems [J].
Bartsch, T ;
Weth, T ;
Willew, M .
JOURNAL D ANALYSE MATHEMATIQUE, 2005, 96 (1) :1-18
[3]   Radial symmetry of positive solutions to nonlinear polyharmonic Dirichlet problems [J].
Berchio, Elvise ;
Gazzola, Filippo ;
Weth, Tobias .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2008, 620 :165-183
[4]  
Bonheure D, 2012, T AM MATH SOC, V364, P447
[5]   Multiple critical points of perturbed symmetric strongly indefinite functionals [J].
Bonheure, Denis ;
Ramos, Miguel .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2009, 26 (02) :675-688
[6]   An approach to symmetrization via polarization [J].
Brock, F ;
Solynin, AY .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 352 (04) :1759-1796
[7]   On the Henon equation: asymptotic profile of ground states, I [J].
Byeon, Jaeyoung ;
Wang, Zhi-Qiang .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2006, 23 (06) :803-828
[8]   Radial and non radial solutions for Hardy-Henon type elliptic systems [J].
Calanchi, Marta ;
Ruf, Bernhard .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2010, 38 (1-2) :111-133
[9]   Asymptotic behavior for elliptic problems with singular coefficient and nearly critical Sobolev growth [J].
Cao, Daomin ;
Peng, Shuangjie .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2006, 185 (02) :189-205
[10]  
Clement P., 1996, NONLINEAR EVOLUTION, P132