Matching Recall and Storage in Sequence Learning with Spiking Neural Networks

被引:85
|
作者
Brea, Johanni [1 ]
Senn, Walter
Pfister, Jean-Pascal
机构
[1] Univ Bern, Dept Physiol, CH-3012 Bern, Switzerland
基金
瑞士国家科学基金会;
关键词
TIMING-DEPENDENT PLASTICITY; D-SERINE; MODULATION; RETRIEVAL; RELEASE; NEURONS; SYSTEMS; SPIKES; MODEL;
D O I
10.1523/JNEUROSCI.4098-12.2013
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Storing and recalling spiking sequences is a general problem the brain needs to solve. It is, however, unclear what type of biologically plausible learning rule is suited to learn a wide class of spatiotemporal activity patterns in a robust way. Here we consider a recurrent network of stochastic spiking neurons composed of both visible and hidden neurons. We derive a generic learning rule that is matched to the neural dynamics by minimizing an upper bound on the Kullback-Leibler divergence from the target distribution to the model distribution. The derived learning rule is consistent with spike-timing dependent plasticity in that a presynaptic spike preceding a postsynaptic spike elicits potentiation while otherwise depression emerges. Furthermore, the learning rule for synapses that target visible neurons can be matched to the recently proposed voltage-triplet rule. The learning rule for synapses that target hidden neurons is modulated by a global factor, which shares properties with astrocytes and gives rise to testable predictions.
引用
收藏
页码:9565 / 9575
页数:11
相关论文
共 50 条
  • [1] Deep learning in spiking neural networks
    Tavanaei, Amirhossein
    Ghodrati, Masoud
    Kheradpisheh, Saeed Reza
    Masquelier, Timothee
    Maida, Anthony
    NEURAL NETWORKS, 2019, 111 : 47 - 63
  • [3] Learning rules in spiking neural networks: A survey
    Yi, Zexiang
    Lian, Jing
    Liu, Qidong
    Zhu, Hegui
    Liang, Dong
    Liu, Jizhao
    NEUROCOMPUTING, 2023, 531 : 163 - 179
  • [4] A review of learning in biologically plausible spiking neural networks
    Taherkhani, Aboozar
    Belatreche, Ammar
    Li, Yuhua
    Cosma, Georgina
    Maguire, Liam P.
    McGinnity, T. M.
    NEURAL NETWORKS, 2020, 122 : 253 - 272
  • [5] Efficient learning in spiking neural networks
    Rast, Alexander
    Aoun, Mario Antoine
    Elia, Eleni G.
    Crook, Nigel
    NEUROCOMPUTING, 2024, 597
  • [6] Supervised learning in spiking neural networks: A review of algorithms and evaluations
    Wang, Xiangwen
    Lin, Xianghong
    Dang, Xiaochao
    NEURAL NETWORKS, 2020, 125 : 258 - 280
  • [7] Nonlinear dynamics and machine learning of recurrent spiking neural networks
    Maslennikov, O. V.
    Pugavko, M. M.
    Shchapin, D. S.
    Nekorkin, V. I.
    PHYSICS-USPEKHI, 2022, 65 (10) : 1020 - 1038
  • [8] Supervised Learning in Spiking Neural Networks with ReSuMe: Sequence Learning, Classification, and Spike Shifting
    Ponulak, Filip
    Kasinski, Andrzej
    NEURAL COMPUTATION, 2010, 22 (02) : 467 - 510
  • [9] Spiking Neural Networks: A Survey
    Nunes, Joao D.
    Carvalho, Marcelo
    Carneiro, Diogo
    Cardoso, Jaime S.
    IEEE ACCESS, 2022, 10 : 60738 - 60764
  • [10] Learning Transmission Delays in Spiking Neural Networks: A Novel Approach to Sequence Learning Based on Spike Delay Variance
    Wright, Paul W.
    Wiles, Janet
    2012 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2012,