Domain-Adversarial Graph Neural Networks for Text Classification

被引:24
|
作者
Wu, Man [1 ]
Pan, Shirui [2 ]
Zhu, Xingquan [1 ]
Zhou, Chuan [3 ,4 ]
Pan, Lei [5 ]
机构
[1] Florida Atlantic Univ, Dept Comp & Elect Engn & Comp Sci, Boca Raton, FL 33431 USA
[2] Monash Univ, Fac Informat Technol, Melbourne, Vic, Australia
[3] Chinese Acad Sci, Acad Math & Syst Sci, Beijing, Peoples R China
[4] Univ Chinese Acad Sci, Sch Cyber Secur, Beijing, Peoples R China
[5] Deakin Univ, Sch Informat Technol, Geelong, Vic 3220, Australia
基金
美国国家科学基金会;
关键词
Graph neural networks; cross-domain learning; text classification;
D O I
10.1109/ICDM.2019.00075
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Text classification, in cross-domain setting, is a challenging task. On the one hand, data from other domains are often useful to improve the learning on the target domain; on the other hand, domain variance and hierarchical structure of documents from words, key phrases, sentences, paragraphs, etc. make it difficult to align domains for effective learning. To date, existing cross-domain text classification methods mainly strive to minimize feature distribution differences between domains, and they typically suffer from three major limitations - (1) difficult to capture semantics in non-consecutive phrases and long-distance word dependency because of treating texts as word sequences, (2) neglect of hierarchical coarse-grained structures of document for feature learning, and (3) narrow focus of the domains at instance levels, without using domains as supervisions to improve text classification. This paper proposes an end-to-end, domain-adversarial graph neural networks (DAGNN), for cross-domain text classification. Our motivation is to model documents as graphs and use a domain-adversarial training principle to lean features from each graph (as well as learning the separation of domains) for effective text classification. At the instance level, DAGNN uses a graph to model each document, so that it can capture non-consecutive and long-distance semantics. At the feature level, DAGNN uses graphs from different domains to jointly train hierarchical graph neural networks in order to learn good features. At the learning level, DAGNN proposes a domain-adversarial principle such that the learned features not only optimally classify documents but also separates domains. Experiments on benchmark datasets demonstrate the effectiveness of our method in cross-domain classification tasks.
引用
收藏
页码:648 / 657
页数:10
相关论文
共 50 条
  • [1] Domain-adversarial training of neural networks
    Ganin, Yaroslav
    Ustinova, Evgeniya
    Ajakan, Hana
    Germain, Pascal
    Larochelle, Hugo
    Laviolette, François
    Marchand, Mario
    Lempitsky, Victor
    Journal of Machine Learning Research, 2016, 17
  • [2] Domain-Adversarial Training of Neural Networks
    Ganin, Yaroslav
    Ustinova, Evgeniya
    Ajakan, Hana
    Germain, Pascal
    Larochelle, Hugo
    Laviolette, Francois
    Marchand, Mario
    Lempitsky, Victor
    JOURNAL OF MACHINE LEARNING RESEARCH, 2016, 17
  • [3] Diversified Dual Domain-Adversarial Neural Networks
    Fang, Yuchun
    Yuan, Qiulong
    Zhang, Wei
    Zhang, Zhaoxiang
    2018 24TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2018, : 615 - 620
  • [4] Domain-adversarial graph neural networks for Λ hyperon identification with CLAS12
    McEneaney, M.
    Vossen, A.
    JOURNAL OF INSTRUMENTATION, 2023, 18 (06)
  • [5] Incremental Unsupervised Domain-Adversarial Training of Neural Networks
    Gallego, Antonio-Javier
    Calvo-Zaragoza, Jorge
    Fisher, Robert B.
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2021, 32 (11) : 4864 - 4878
  • [6] Low-resource text classification using domain-adversarial learning
    Griesshaber, Daniel
    Ngoc Thang Vu
    Maucher, Johannes
    COMPUTER SPEECH AND LANGUAGE, 2020, 62
  • [7] Low-Resource Text Classification Using Domain-Adversarial Learning
    Griesshaber, Daniel
    Ngoc Thang Vu
    Maucher, Johannes
    STATISTICAL LANGUAGE AND SPEECH PROCESSING, SLSP 2018, 2018, 11171 : 129 - 139
  • [8] Domain-Adversarial Neural Networks for Deforestation Detection in Tropical Forests
    Soto, Pedro J.
    Costa, Gilson A.
    Feitosa, Raul Q.
    Ortega, Mabel X.
    Bermudez, Jose D.
    Turnes, Javier N.
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [9] Learning Multi-Domain Adversarial Neural Networks for Text Classification
    Ding, Xiao
    Shi, Qiankun
    Cai, Bibo
    Liu, Ting
    Zhao, Yanyan
    Ye, Qiang
    IEEE ACCESS, 2019, 7 : 40323 - 40332
  • [10] Domain-Adversarial Neural Networks to Address the Appearance Variability of Histopathology Images
    Lafarge, Maxime W.
    Pluim, Josien P. W.
    Eppenhof, Koen A. J.
    Moeskops, Pim
    Veta, Mitko
    DEEP LEARNING IN MEDICAL IMAGE ANALYSIS AND MULTIMODAL LEARNING FOR CLINICAL DECISION SUPPORT, 2017, 10553 : 83 - 91