Coulomb drag between ballistic quantum wires

被引:25
|
作者
Dmitriev, A. P. [1 ,2 ]
Gornyi, I. V. [1 ,2 ]
Polyakov, D. G. [2 ]
机构
[1] AF Ioffe Phys Tech Inst, St Petersburg 194021, Russia
[2] Karlsruhe Inst Technol, Inst Nanotechnol, D-76021 Karlsruhe, Germany
关键词
COLLISION OPERATOR; TRANSPORT; FLUCTUATIONS; LIQUIDS;
D O I
10.1103/PhysRevB.86.245402
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We develop a kinetic equation description of Coulomb drag between ballistic one-dimensional electron systems, which enables us to demonstrate that equilibration processes between right- and left-moving electrons are crucially important for establishing dc drag. In one-dimensional geometry, this type of equilibration requires either backscattering near the Fermi level or scattering with small-momentum transfer near the bottom of the electron spectrum. Importantly, pairwise forward scattering in the vicinity of the Fermi surface alone is not sufficient to produce a nonzero dc drag resistivity rho(D), in contrast to a number of works that have studied Coulomb drag due to this mechanism of scattering before. We show that slow equilibration between two subsystems of electrons of opposite chirality, "bottlenecked" by inelastic collisions involving cold electrons near the bottom of the conduction band, leads to a strong suppression of Coulomb drag, which results in an activation dependence of rho(D) on temperature, instead of the conventional power law. We demonstrate the emergence of a drag regime in which rho(D) does not depend on the strength of interwire interactions, while depending strongly on the strength of interactions inside the wires.
引用
收藏
页数:36
相关论文
共 50 条
  • [31] Nonohmic Coulomb drag in the ballistic electron transport regime
    Gurevich, VL
    Muradov, MI
    JETP LETTERS, 2000, 71 (03) : 111 - 113
  • [32] Coulomb drag in topological wires separated by an air gap
    Lingjie Du
    Jianmin Zheng
    Yang-Zhi Chou
    Jie Zhang
    Xingjun Wu
    Gerard Sullivan
    Amal Ikhlassi
    Rui-Rui Du
    Nature Electronics, 2021, 4 : 573 - 578
  • [33] Coulomb drag in topological wires separated by an air gap
    Du, Lingjie
    Zheng, Jianmin
    Chou, Yang-Zhi
    Zhang, Jie
    Wu, Xingjun
    Sullivan, Gerard
    Ikhlassi, Amal
    Du, Rui-Rui
    NATURE ELECTRONICS, 2021, 4 (08) : 573 - 578
  • [34] Coulomb drag in the extreme quantum limit
    Lilly, MP
    Eisenstein, JP
    Pfeiffer, LN
    West, KW
    PHYSICAL REVIEW LETTERS, 1998, 80 (08) : 1714 - 1717
  • [35] Coulomb drag in parallel quantum dots
    Moldoveanu, V.
    Tanatar, B.
    EPL, 2009, 86 (06)
  • [36] MAGNETOTRANSPORT IN COULOMB COUPLED QUANTUM WIRES
    VASILOPOULOS, P
    TSO, HC
    SURFACE SCIENCE, 1992, 263 (1-3) : 368 - 373
  • [37] Ballistic electron emission microscopy on quantum wires
    Smoliner, J
    Eder, C
    Strasser, G
    Gornik, E
    PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 1997, 204 (01): : 386 - 392
  • [38] Zeeman splitting in ballistic hole quantum wires
    Danneau, R.
    Klochan, O.
    Clarke, W. R.
    Ho, L. H.
    Micolich, A. P.
    Simmons, M. Y.
    Hamilton, A. R.
    Pepper, M.
    Ritchie, D. A.
    Zulicke, U.
    PHYSICAL REVIEW LETTERS, 2006, 97 (02)
  • [39] Interference of ballistic carriers in modulated quantum wires
    Bagraev, NT
    Gehlhoff, W
    Ivanov, VK
    Klyachkin, LE
    Malyarenko, AM
    Shelykh, IA
    PHYSICS OF LOW-DIMENSIONAL STRUCTURES, 2000, 1-2 : 37 - 47
  • [40] Ballistic to diffuse crossover in long quantum wires
    Seamons, JA
    Bielejec, E
    Lilly, MP
    Reno, JL
    Du, RR
    Physics of Semiconductors, Pts A and B, 2005, 772 : 917 - 918