Peano kernel error analysis for quadratic nodal spline interpolation

被引:5
作者
de Swardt, SA [1 ]
de Villiers, JM [1 ]
机构
[1] Univ Stellenbosch, Dept Math, ZA-7600 Stellenbosch, South Africa
关键词
D O I
10.1006/jath.1999.3337
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using a Peano kernel technique, Jackson-type estimates with respect to the maximum norm are derived for the quadratic nodal spline interpolation error. The explicitly calculated error constants are shown to grow linearly with respect to the local mesh ratio parameter, and are, at least for the important special case of a uniform spline knot sequence, significantly smaller than those previously calculated by different methods. (C) 1999 Academic Press.
引用
收藏
页码:344 / 368
页数:25
相关论文
共 12 条
[1]  
[Anonymous], 1974, NUMERICAL QUADRATURE
[2]   Applications of optimally local interpolation to interpolatory approximants and compactly supported wavelets [J].
Chui, CK ;
DeVilliers, JM .
MATHEMATICS OF COMPUTATION, 1996, 65 (213) :99-114
[3]   Convergence of rules based on nodal splines for the numerical evaluation of certain 2D Cauchy principal value integrals [J].
Dagnino, C ;
Perotto, S ;
Santi, E .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1998, 89 (02) :225-235
[4]   COMPACTLY SUPPORTED FUNDAMENTAL FUNCTIONS FOR SPLINE INTERPOLATION [J].
DAHMEN, W ;
GOODMAN, TNT ;
MICCHELLI, CA .
NUMERISCHE MATHEMATIK, 1988, 52 (06) :639-664
[5]   Convergence of derivatives of optimal nodal splines [J].
Demichelis, V .
JOURNAL OF APPROXIMATION THEORY, 1997, 88 (03) :370-383
[6]  
DEVILLIERS JM, 1994, INT S NUM M, V119, P157
[7]   A NODAL SPLINE INTERPOLANT FOR THE GREGORY RULE OF EVEN ORDER [J].
DEVILLIERS, JM .
NUMERISCHE MATHEMATIK, 1993, 66 (01) :123-137
[8]   A CONVERGENCE RESULT IN NODAL SPLINE INTERPOLATION [J].
DEVILLIERS, JM .
JOURNAL OF APPROXIMATION THEORY, 1993, 74 (03) :266-279
[9]   OPTIMAL LOCAL SPLINE INTERPOLANTS [J].
DEVILLIERS, JM ;
ROHWER, CH .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1987, 18 (01) :107-119
[10]  
DEVILLIERS JM, 1991, PROGR APPROXIMATION, P201