Existence results for degenerate p(x)-Laplace equations with Leray-Lions type operators

被引:21
作者
Ho, Ky [1 ]
Sim, Inbo [1 ]
机构
[1] Univ Ulsan, Dept Math, Ulsan 680749, South Korea
基金
新加坡国家研究基金会;
关键词
p(x)-Laplacian; weighted variable exponent Lebesgue-Sobolev spaces; multiplicity; a priori bound; Leray-Lions type operators; ELLIPTIC-EQUATIONS; VARIABLE EXPONENT; MULTIPLICITY; SPACES;
D O I
10.1007/s11425-015-0385-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show the existence and multiplicity of solutions to degenerate p(x)-Laplace equations with Leray-Lions type operators using direct methods and critical point theories in Calculus of Variations and prove the uniqueness and nonnegativeness of solutions when the principal operator is monotone and the nonlinearity is nonincreasing. Our operator is of the most general form containing all previous ones and we also weaken assumptions on the operator and the nonlinearity to get the above results. Moreover, we do not impose the restricted condition on p(x) and the uniform monotonicity of the operator to show the existence of three distinct solutions.
引用
收藏
页码:133 / 146
页数:14
相关论文
共 23 条
[1]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[2]  
[Anonymous], 1997, Minimax theorems
[3]   Three weak solutions for elliptic Dirichlet problems [J].
Bonanno, Gabriele ;
Bisci, Giovanni Molica .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 382 (01) :1-8
[4]   Existence and multiplicity results for elliptic problems with p(.)-Growth conditions [J].
Boureanu, Maria-Magdalena ;
Udrea, Diana Nicoleta .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2013, 14 (04) :1829-1844
[5]   Variable exponent, linear growth functionals in image restoration [J].
Chen, Yunmei ;
Levine, Stacey ;
Rao, Murali .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2006, 66 (04) :1383-1406
[6]   Lebesgue and Sobolev Spaces with Variable Exponents [J].
Diening, Lars ;
Harjulehto, Petteri ;
Hasto, Peter ;
Ruzicka, Michael .
LEBESGUE AND SOBOLEV SPACES WITH VARIABLE EXPONENTS, 2011, 2017 :1-+
[7]   Global C1,α regularity for variable exponent elliptic equations in divergence form [J].
Fan, Xianling .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 235 (02) :397-417
[8]   Existence and uniqueness for the p(x)-Laplacian-Dirichlet problems [J].
Fan, Xianling .
MATHEMATISCHE NACHRICHTEN, 2011, 284 (11-12) :1435-1445
[9]   EXISTENCE AND MULTIPLICITY OF SOLUTIONS FOR DEGENERATE p(x)-LAPLACE EQUATIONS INVOLVING CONCAVE-CONVEX TYPE NONLINEARITIES WITH TWO PARAMETERS [J].
Ho, Ky ;
Sim, Inbo .
TAIWANESE JOURNAL OF MATHEMATICS, 2015, 19 (05) :1469-1493
[10]   Existence and some properties of solutions for degenerate elliptic equations with exponent variable (vol 98, pg 146, 2014) [J].
Ho, Ky ;
Sim, Inbo .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2015, 128 :423-426