SCORE-MATCHING ESTIMATORS FOR CONTINUOUS-TIME POINT-PROCESS REGRESSION MODELS
被引:0
|
作者:
Sahani, Maneesh
论文数: 0引用数: 0
h-index: 0
机构:
UCL, Gatsby Computat Neurosci Unit, 25 Howland St, London W1T 4JG, EnglandUCL, Gatsby Computat Neurosci Unit, 25 Howland St, London W1T 4JG, England
Sahani, Maneesh
[1
]
Bohner, Gergo
论文数: 0引用数: 0
h-index: 0
机构:
UCL, Gatsby Computat Neurosci Unit, 25 Howland St, London W1T 4JG, EnglandUCL, Gatsby Computat Neurosci Unit, 25 Howland St, London W1T 4JG, England
Bohner, Gergo
[1
]
Meyer, Arne
论文数: 0引用数: 0
h-index: 0
机构:
UCL, Gatsby Computat Neurosci Unit, 25 Howland St, London W1T 4JG, EnglandUCL, Gatsby Computat Neurosci Unit, 25 Howland St, London W1T 4JG, England
Meyer, Arne
[1
]
机构:
[1] UCL, Gatsby Computat Neurosci Unit, 25 Howland St, London W1T 4JG, England
来源:
2016 IEEE 26TH INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP)
|
2016年
We introduce a new class of efficient estimators based on score matching for probabilistic point process models. Unlike discretised likelihood-based estimators, score matching estimators operate on continuous-time data, with computational demands that grow with the number of events rather than with total observation time. Furthermore, estimators for many common regression models can be obtained in closed form, rather than by iteration. This new approach to estimation may thus expand the range of tractable models available for event-based data.