Wavelet-based synthesis of the multifractional Brownian motion

被引:0
作者
Wang Zhaorui [1 ]
Lue Shanwei [1 ]
Nakamura, Taketsune [2 ]
机构
[1] Beihang Univ, Sch Elect & Informat Engn, Beijing 100083, Peoples R China
[2] Kyoto Univ, Dept Elect Engn, Kyoto 6158510, Japan
来源
CHINESE JOURNAL OF ELECTRONICS | 2008年 / 17卷 / 03期
基金
国家高技术研究发展计划(863计划);
关键词
multifractional Brownian motion; wavelets; Holder regularity;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The multifractional Brownian motion (mBm) is introduced as a natural extension of traditional fractional Brownian motion (fBm). The selling point of mBm is that its Holder regularity is allowed to vary from point to point, such that makes it a promising model for those stochastic processes whose regularity evolves in time. A wavelet-based algorithm to synthesize a realization of mBm is proposed in this work. The desired local regularity of the multifractional process is obtained by controlling the weights of the wavelet expansion of the Gaussian white noise. This approach is not only time saving, also appropriate for generating the multifractional process that is non-Gaussian and autocovariance function unknown in advance. The validity is verified by numerical experiments and real-world data.
引用
收藏
页码:537 / 540
页数:4
相关论文
共 50 条
[41]   Local times for multifractional Brownian motion in higher dimensions: A white noise approach [J].
Bock, Wolfgang ;
da Silva, Jose Luis ;
Suryawan, Herry P. .
INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2016, 19 (04)
[42]   Wavelet-Based Entropy Measures to Characterize Two-Dimensional Fractional Brownian Fields [J].
Nicolis, Orietta ;
Mateu, Jorge ;
Contreras-Reyes, Javier E. .
ENTROPY, 2020, 22 (02)
[43]   Adaptive multiresolution motion estimation techniques for wavelet-based video coding [J].
Mandal, MK ;
Aboulnasr, T ;
Panchanathan, S .
VISUAL COMMUNICATIONS AND IMAGE PROCESSING '98, PTS 1 AND 2, 1997, 3309 :965-974
[44]   LOCAL ESTIMATION OF THE HURST INDEX OF MULTIFRACTIONAL BROWNIAN MOTION BY INCREMENT RATIO STATISTIC METHOD [J].
Bertrand, Pierre Raphael ;
Fhima, Mehdi ;
Guillin, Arnaud .
ESAIM-PROBABILITY AND STATISTICS, 2013, 17 :307-327
[45]   Asymptotic growth of trajectories of multifractional Brownian motion, with statistical applications to drift parameter estimation [J].
Dozzi M. ;
Kozachenko Y. ;
Mishura Y. ;
Ralchenko K. .
Statistical Inference for Stochastic Processes, 2018, 21 (1) :21-52
[46]   Wavelet estimation for operator fractional Brownian motion [J].
Abry, Patrice ;
Didier, Gustavo .
BERNOULLI, 2018, 24 (02) :895-928
[47]   Girsanov theorem for multifractional Brownian processes [J].
Harang, Fabian A. ;
Nilssen, Torstein K. ;
Proske, Frank N. .
STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC PROCESSES, 2022, 94 (08) :1137-1165
[48]   A hierarchical wavelet-based image model for pattern analysis and synthesis [J].
Scott, C ;
Nowak, R .
WAVELET APPLICATIONS IN SIGNAL AND IMAGE PROCESSING VIII PTS 1 AND 2, 2000, 4119 :176-184
[49]   Wavelet-Based Image Registration [J].
Paulson, Christopher ;
Ezekiel, Soundararajan ;
Wu, Dapeng .
EVOLUTIONARY AND BIO-INSPIRED COMPUTATION: THEORY AND APPLICATIONS IV, 2010, 7704
[50]   A Wavelet-based Encoding for Neuroevolution [J].
van Steenkiste, Sjoerd ;
Koutnik, Jan ;
Driessens, Kurt ;
Schmidhuber, Jurgen .
GECCO'16: PROCEEDINGS OF THE 2016 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2016, :517-524