Branes and the Kraft-Procesi transition

被引:46
作者
Cabrera, Santiago [1 ]
Hanany, Amihay [1 ]
机构
[1] Imperial Coll London, Blackett Lab, Theoret Phys, London SW7 2AZ, England
基金
英国工程与自然科学研究理事会;
关键词
Brane Dynamics in Gauge Theories; Field Theories in Lower Dimensions; Global Symmetries; Supersymmetric gauge theory; CONJUGACY CLASSES; GEOMETRY;
D O I
10.1007/JHEP11(2016)175
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
The Coulomb and Higgs branches of certain 3d N = 4 gauge theories can be understood as closures of nilpotent orbits. Recently, a new theorem by Namikawa suggests that this is the simplest possible case, thus giving this class a special role. In this note we use branes to reproduce the mathematical work by Kraft and Procesi. It studies the classification of all nilpotent orbits for classical groups and it characterizes an inclusion relation via minimal singularities. We show how these minimal singularities arise naturally in the Type IIB superstring embedding of the 3d A-type theories. The Higgs mechanism can be used to remove the minimal singularity, corresponding to a transition in the brane configuration that induces a new effective 3d theory. This reproduces the Kraft-Procesi results, endowing the family of gauge theories with a new underlying structure. We provide an efficient procedure for computing such brane transitions.
引用
收藏
页数:60
相关论文
共 30 条
[1]  
Bachas C, 2001, J HIGH ENERGY PHYS
[2]   The Hilbert series of the one instanton moduli space [J].
Benvenuti, Sergio ;
Hanany, Amihay ;
Mekareeya, Noppadol .
JOURNAL OF HIGH ENERGY PHYSICS, 2010, (06)
[3]  
Bourget A, 2015, J HIGH ENERGY PHYS, DOI 10.1007/JHEP08(2015)106
[4]  
Brieskorn E., 1970, Actes Congr. Int. Math. Nice, V2, P279
[5]  
Brylinski R., 1994, J AM MATH SOC, V7, P269
[6]  
Carter Roger W., 1993, FINITE GROUPS LIE TY
[7]   NILPOTENT ORBITS AND CODIMENSION-2 DEFECTS OF 6d N = (2,0) THEORIES [J].
Chacaltana, Oscar ;
Distler, Jacques ;
Tachikawa, Yuji .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2013, 28 (3-4)
[8]  
Collingwood D.H., 1993, Mathematics series
[9]  
Cremonesi S, 2014, J HIGH ENERGY PHYS, DOI 10.1007/JHEP01(2014)005
[10]  
Feng B, 2000, J HIGH ENERGY PHYS