A CNN-Based Method of Vehicle Detection from Aerial Images Using Hard Example Mining

被引:53
作者
Koga, Yohei [1 ]
Miyazaki, Hiroyuki [1 ]
Shibasaki, Ryosuke [1 ]
机构
[1] Univ Tokyo, Ctr Spatial Informat Sci, 5-1-5 Kashiwanoha, Kashiwa, Chiba 2778568, Japan
关键词
vehicle detection; hard example mining; high-resolution; aerial image; satellite image; convolutional neural network (CNN); GRADIENTS;
D O I
10.3390/rs10010124
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Recently, deep learning techniques have had a practical role in vehicle detection. While much effort has been spent on applying deep learning to vehicle detection, the effective use of training data has not been thoroughly studied, although it has great potential for improving training results, especially in cases where the training data are sparse. In this paper, we proposed using hard example mining (HEM) in the training process of a convolutional neural network (CNN) for vehicle detection in aerial images. We applied HEM to stochastic gradient descent (SGD) to choose the most informative training data by calculating the loss values in each batch and employing the examples with the largest losses. We picked 100 out of both 500 and 1000 examples for training in one iteration, and we tested different ratios of positive to negative examples in the training data to evaluate how the balance of positive and negative examples would affect the performance. In any case, our method always outperformed the plain SGD. The experimental results for images from New York showed improved performance over a CNN trained in plain SGD where the F1 score of our method was 0.02 higher.
引用
收藏
页数:21
相关论文
共 20 条
[1]   Vehicle Detection in Satellite Images by Hybrid Deep Convolutional Neural Networks [J].
Chen, Xueyun ;
Xiang, Shiming ;
Liu, Cheng-Lin ;
Pan, Chun-Hong .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2014, 11 (10) :1797-1801
[2]   BING: Binarized Normed Gradients for Objectness Estimation at 300fps [J].
Cheng, Ming-Ming ;
Zhang, Ziming ;
Lin, Wen-Yan ;
Torr, Philip .
2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2014, :3286-3293
[3]   Histograms of oriented gradients for human detection [J].
Dalal, N ;
Triggs, B .
2005 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOL 1, PROCEEDINGS, 2005, :886-893
[4]  
Girshick R., 2014, P IEEE C COMP VIS PA, DOI [10.1109/CVPR.2014.81, DOI 10.1109/CVPR.2014.81, 10.1109/cvpr.2014.81]
[5]   Fast R-CNN [J].
Girshick, Ross .
2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, :1440-1448
[6]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778
[7]  
He KM, 2014, LECT NOTES COMPUT SC, V8691, P346, DOI [arXiv:1406.4729, 10.1007/978-3-319-10578-9_23]
[8]  
Ioffe Sergey, 2015, P MACHINE LEARNING R, V37, P448, DOI [DOI 10.48550/ARXIV.1502.03167, DOI 10.5555/3015118.3045167]
[9]  
Kingma D. P., P 3 INT C LEARN REPR
[10]  
Liu K, DLR 3K MUNICH VEHICL