PERTURBATIONS OF THE METRIC IN SEIBERG-WITTEN EQUATIONS

被引:0
作者
Scala, Luca [1 ]
机构
[1] Univ Chicago, Dept Math, Chicago, IL 60637 USA
关键词
Seiberg-Witten theory; perturbations of the metric; Kahler surfaces; transversality; MANIFOLD;
D O I
10.5802/aif.2640
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let M a compact connected oriented 4-manifold. We study the space Xi of Spin(c)-structures of fixed fundamental class, as an infinite dimensional principal bundle on the manifold of riemannian metrics on M. In order to study perturbations of the metric in Seiberg-Witten equations, we study the transversality of universal equations, parametrized with all Spin(c)-structures Xi. We prove that, on a complex Kahler surface, for an hermitian metric h sufficiently close to the original Kahler metric, the moduli space of Seiberg-Witten monopoles relative to the metric h is smooth of the expected dimension.
引用
收藏
页码:1259 / 1297
页数:39
相关论文
共 21 条
[1]  
BENNEQUIN D., 1997, ASTERISQUE, p[807, 59]
[2]  
Besse A. L., 1987, ERGEBNISSE MATH IHRE, DOI [10.1007/978-3-540-74311-8, DOI 10.1007/978-3-540-74311-8]
[3]   SPINOR, DIRAC OPERATOR AND CHANGE OF THE METRIC [J].
BOURGUIGNON, JP ;
GAUDUCHON, P .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 144 (03) :581-599
[4]  
Donaldson S. K., 1990, OXFORD MATH MONOGRAP
[5]  
Freed Daniel S., 1991, Mathematical Sciences Research Institute Publications, V1
[6]  
FREED DS, 1989, MICH MATH J, V36, P323
[7]  
Friedrich T., 2000, Graduate Studies in Mathematics, V25
[8]   THE RIEMANNIAN MANIFOLD OF ALL RIEMANNIAN METRICS [J].
GILMEDRANO, O ;
MICHOR, PW .
QUARTERLY JOURNAL OF MATHEMATICS, 1991, 42 (166) :183-202
[9]  
KOBAYASHI S, 1996, FDN DIFFERENTIAL GEO, V1
[10]  
Kriegl A., 1997, The convenient setting of global analysis, V53