Neural structures using the eigenstates of a quantum harmonic oscillator

被引:8
作者
Rigatos, G [1 ]
Tzafestas, S
机构
[1] Ind Syst Inst, Unit Ind Automat, Rion 26504, Greece
[2] Natl Tech Univ Athens, Dept Elect & Comp Engn, GR-15773 Athens, Greece
关键词
D O I
10.1007/s11080-006-7265-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The main result of the paper is the use of orthogonal Hermite polynomials as the basis functions of feedforward neural networks. The proposed neural networks have some interesting properties: (i) the basis functions are invariant under the Fourier transform, subject only to a change of scale, (ii) the basis functions are the eigenstates of the quantum harmonic oscillator, and stem from the solution of Schrodinger's diffusion equation. The proposed feed-forward neural networks demonstrate the particle-wave nature of information and can be used in nonparametric estimation. Possible applications of the proposed neural networks include function approximation, image processing and system modelling.
引用
收藏
页码:27 / 41
页数:15
相关论文
共 11 条
  • [1] Cohen-Tannoudji C., 1998, MECANIQUE QUANTIQUE, VI
  • [2] Haykin S., 1994, Neural networks: a comprehensive foundation
  • [3] Kosko B., 1992, NEURAL NETWORKS FUZZ
  • [4] Constructive feedforward neural networks using hermite polynomial activation functions
    Ma, LY
    Khorasani, K
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 2005, 16 (04): : 821 - 833
  • [5] Perus M., 2001, Nonlinear Phenomena in Complex Systems, V4, P157
  • [6] Shapelets - I. A method for image analysis
    Refregier, A
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2003, 338 (01) : 35 - 47
  • [7] Morphogenic neural networks encode abstract rules by data
    Resconi, G
    van der Wal, AJ
    [J]. INFORMATION SCIENCES, 2002, 142 (1-4) : 249 - 273
  • [8] Parallelization of a fuzzy control algorithm using quantum computation
    Rigatos, GG
    Tzafestas, SG
    [J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2002, 10 (04) : 451 - 460
  • [9] RIGATOS GG, 2003, COMPUTATIONAL INTELL
  • [10] Strauss WA., 1992, PARTIAL DIFFERENTIAL