The proportion of Weierstrass semigroups

被引:11
作者
Kaplan, Nathan [1 ]
Ye, Lynnelle [2 ]
机构
[1] Harvard Univ, Dept Math, Cambridge, MA 02138 USA
[2] Stanford Univ, Dept Math, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
Numerical semigroup; Weierstrass semigroup; Genus of numerical semigroup; Frobenius number; NUMERICAL SEMIGROUPS;
D O I
10.1016/j.jalgebra.2012.09.041
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We solve a problem of Komeda concerning the proportion of numerical semigroups which do not satisfy Buchweitz' necessary criterion for a semigroup to occur as the Weierstrass semigroup of a point on an algebraic curve. A result of Eisenbud and Harris gives a sufficient condition for a semigroup to occur as a Weierstrass semigroup. We show that the family of semigroups satisfying this condition has density zero in the set of all semigroups. In the process, we prove several more general results about the structure of a typical numerical semigroup. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:377 / 391
页数:15
相关论文
共 50 条
  • [41] New examples of Weierstrass semigroups associated with a double covering of a curve on a Hirzebruch surface of degree one
    Kenta Watanabe
    Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2023, 64 : 145 - 153
  • [42] THE SIGMA FUNCTION FOR WEIERSTRASS SEMIGROUPS 3, 7, 8 AND 6, 13, 14, 15, 16
    Komeda, Jiryo
    Matsutani, Shigeki
    Previato, Emma
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2013, 24 (11)
  • [43] New examples of Weierstrass semigroups associated with a double covering of a curve on a Hirzebruch surface of degree one
    Watanabe, Kenta
    BEITRAGE ZUR ALGEBRA UND GEOMETRIE-CONTRIBUTIONS TO ALGEBRA AND GEOMETRY, 2023, 64 (01): : 145 - 153
  • [44] Minimal generating sets of Weierstrass semigroups of certain m-tuples on the norm-trace function field
    Matthews, Gretchen L.
    Peachey, Justin D.
    FINITE FIELDS: THEORY AND APPLICATIONS, 2010, 518 : 315 - 326
  • [45] Smoothability and order bound for AS semigroups
    Oneto, Anna
    Tamone, Grazia
    SEMIGROUP FORUM, 2012, 85 (02) : 268 - 288
  • [46] Frobenius Numbers of Generalized Fibonacci Semigroups
    Matthews, Gretchen L.
    COMBINATORIAL NUMBER THEORY, 2009, : 117 - 124
  • [47] Syzygies of GS monomial curves and Weierstrass property
    Anna Oneto
    Grazia Tamone
    Semigroup Forum, 2016, 92 : 258 - 273
  • [48] Syzygies of GS monomial curves and Weierstrass property
    Oneto, Anna
    Tamone, Grazia
    SEMIGROUP FORUM, 2016, 92 (01) : 258 - 273
  • [49] NUMERICAL SEMIGROUPS THAT ARE FRACTIONS OF NUMERICAL SEMIGROUPS OF MAXIMAL EMBEDDING DIMENSION
    Smith, Harold J.
    JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2010, 17 (01): : 69 - 96
  • [50] Numerical semigroups II: Pseudo-symmetric AA-semigroups
    Garcia-Marco, Ignacio
    Alfonsin, Jorge L. Ramirez
    Rodseth, Oystein J.
    JOURNAL OF ALGEBRA, 2017, 470 : 484 - 498