High-performance slow light photonic crystal waveguides with topology optimized or circular-hole based material layouts

被引:41
作者
Wang, Fengwen [1 ]
Jensen, Jakob S. [1 ]
Sigmund, Ole [1 ]
机构
[1] Tech Univ Denmark, Dept Mech Engn, Nils Koppels Alle,Bldg 404, DK-2800 Lyngby, Denmark
关键词
Slow light; Photonic crystal waveguide; Topology optimization; Robust design; SYSTEMATIC DESIGN; DISPERSION; ROBUST;
D O I
10.1016/j.photonics.2012.04.004
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Photonic crystal waveguides are optimized for modal confinement and loss related to slow light with high group index. A detailed comparison between optimized circular-hole based waveguides and optimized waveguides with free topology is performed. Design robustness with respect to manufacturing imperfections is enforced by considering different design realizations generated from under-, standard- and over-etching processes in the optimization procedure. A constraint ensures a certain modal confinement, and loss related to slow light with high group index is indirectly treated by penalizing field energy located in air regions. It is demonstrated that slow light with a group index up to n(g) = 278 can be achieved by topology optimized waveguides with promising modal confinement and restricted group-velocity-dispersion. All the topology optimized waveguides achieve a normalized group-index bandwidth of 0.48 or above. The comparisons between circular-hole based designs and topology optimized designs illustrate that the former can be efficient for dispersion engineering but that larger improvements are possible if irregular geometries are allowed. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:378 / 388
页数:11
相关论文
共 27 条
[1]  
[Anonymous], 2013, Topology optimization: theory, methods, and applications
[2]   Design of robust and efficient photonic switches using topology optimization [J].
Elesin, Y. ;
Lazarov, B. S. ;
Jensen, J. S. ;
Sigmund, O. .
PHOTONICS AND NANOSTRUCTURES-FUNDAMENTALS AND APPLICATIONS, 2012, 10 (01) :153-165
[3]   The effect of higher-order dispersion on slow light propagation in photonic crystal waveguides [J].
Engelen, RJP ;
Sugimoto, Y ;
Watanabe, Y ;
Korterik, JP ;
Ikeda, N ;
van Hulst, NF ;
Asakawa, K ;
Kuipers, L .
OPTICS EXPRESS, 2006, 14 (04) :1658-1672
[4]   Disorder-induced losses in planar photonic crystals [J].
Ferrini, R. ;
Leuenberger, D. ;
Houdre, R. ;
Benisty, H. ;
Kamp, M. ;
Forchel, A. .
OPTICS LETTERS, 2006, 31 (10) :1426-1428
[5]   Photonic crystal waveguides with semi-slow light and tailored dispersion properties [J].
Frandsen, Lars H. ;
Lavrinenko, Andrei V. ;
Fage-Pedersen, Jacob ;
Borel, Peter I. .
OPTICS EXPRESS, 2006, 14 (20) :9444-9450
[6]   Improvement of delay-bandwidth product in photonic crystal slow-light waveguides [J].
Hao, Ran ;
Cassan, Eric ;
Le Roux, Xavier ;
Gao, Dingshan ;
Do Khanh, Van ;
Vivien, Laurent ;
Marris-Morini, Delphine ;
Zhang, Xinliang .
OPTICS EXPRESS, 2010, 18 (16) :16309-16319
[7]   Novel Kind of Semislow Light Photonic Crystal Waveguides With Large Delay-Bandwidth Product [J].
Hao, Ran ;
Cassan, Eric ;
Kurt, Hamza ;
Hou, Jin ;
Le Roux, Xavier ;
Marris-Morini, Delphine ;
Vivien, Laurent ;
Gao, Dingshan ;
Zhou, Zhiping ;
Zhang, Xinliang .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2010, 22 (11) :844-846
[8]   Topology optimization for nano-photonics [J].
Jensen, Jakob S. ;
Sigmund, Ole .
LASER & PHOTONICS REVIEWS, 2011, 5 (02) :308-321
[9]   Systematic design of photonic crystal structures using topology optimization: Low-loss waveguide bends [J].
Jensen, JS ;
Sigmund, O .
APPLIED PHYSICS LETTERS, 2004, 84 (12) :2022-2024
[10]   Why do we need slow light? [J].
Krauss, Thomas F. .
NATURE PHOTONICS, 2008, 2 (08) :448-450