Critical Trace Trudinger-Moser Inequalities on a Compact Riemann Surface with Smooth Boundary

被引:0
作者
Zhang, Mengjie [1 ]
机构
[1] Renmin Univ China, Sch Math, Beijing 100872, Peoples R China
关键词
Trudinger-Moser inequality; Riemann surface; Blow-up analysis; Extremal function; MEAN-VALUE ZERO; EXTREMAL-FUNCTIONS; SHARP FORM;
D O I
10.1007/s11401-022-0333-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, the author concerns two trace Trudinger-Moser inequalities and obtains the corresponding extrema] functions on a compact Riemann surface (Sigma, g) with smooth boundary partial derivative Sigma. Explicitly, let lambda(1)(partial derivative Sigma) = inf(u is an element of W1,2(Sigma,g),integral partial derivative Sigma udsg=0, u not equivalent to 0) integral(Sigma)(vertical bar del(g)u vertical bar(2)+u(2))dv(g)/integral(partial derivative Sigma)u(2)ds(g) and H = { u is an element of W-1,W-2(Sigma,g) : integral(Sigma)(vertical bar del(g)u vertical bar(2)+ u(2))dv(g)-alpha integral(partial derivative Sigma)u(2)ds(g) <= 1 and integral(partial derivative Sigma)uds(g) = 0}, where W-1,W-2(Sigma, g) denotes the usual Sobolev space and del(g) stands for the gradient operator. By the method of blow-up analysis, we obtain sup(u is an element of H)integral(partial derivative Sigma) e(pi u2) ds(g ){ < + infinity, 0 <= alpha < lambda 1 (partial derivative Sigma), = + infinity, alpha >= lambda(1) (partial derivative Sigma). Moreover, the author proves the above supremum is attained by a function u(alpha) is an element of H boolean AND C-infinity((Sigma) over bar) for any 0 <= alpha < lambda(1) (partial derivative Sigma). Further, he extends the result to the case of higher order eigenvalues. The results generalize those of [Li, Y. and Liu, P., Moser-Trudinger inequality on the boundary of compact Riemannian surface, Math. Z., 250, 2005, 363-386], [Yang, Y., Moser-Trudinger trace inequalities on a compact Riemannian surface with boundary, Pacific J. Math., 227, 2006, 177-200] and [Yang, Y., Extremal functions for TrudingerMoser inequalities of Adimurthi-Druet type in dimension two, J. Diff. Eq., 258, 2015, 3161-3193].
引用
收藏
页码:425 / 442
页数:18
相关论文
共 39 条
[1]   Blow-up analysis in dimension 2 and a sharp form of Trudinger-Moser inequality [J].
Adimurthi ;
Druet, O .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2004, 29 (1-2) :295-322
[2]   Global compactness properties of semilinear elliptic equations with critical exponential growth [J].
Adimurthi ;
Struwe, M .
JOURNAL OF FUNCTIONAL ANALYSIS, 2000, 175 (01) :125-167
[3]  
[Anonymous], 1965, Advanced Scientific Research, Mathematics Section (1964)
[4]  
[Anonymous], 1997, Asian J. Math, DOI DOI 10.4310/AJM.1997.V1.N2.A3
[5]  
[Anonymous], 2001, J. Partial Differ. Equ.
[6]  
Aubin T., 1970, C. R. Acad. Sci. Paris Sr. A-B, V270, pA1514
[7]  
Brezis H, 2011, UNIVERSITEXT, P1, DOI 10.1007/978-0-387-70914-7_1
[8]  
CARLESON L, 1986, B SCI MATH, V110, P113
[9]  
CHERRIER P, 1979, B SCI MATH, V103, P353
[10]   A SHARP TRUDINGER-MOSER TYPE INEQUALITY IN R2 [J].
de Souza, Manasses ;
do O, Joao Marcos .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 366 (09) :4513-4549