The Weak Localization for the Alloy-Type Anderson Model on a Cubic Lattice

被引:11
|
作者
Cao, Zhenwei [1 ]
Elgart, Alexander [1 ]
机构
[1] Virginia Tech, Dept Math, Blacksburg, VA 24061 USA
基金
美国国家科学基金会;
关键词
Anderson localization; Weak disorder; Feynman diagrams; Spectral analysis; LIFSHITZ TAILS; DISORDER LOCALIZATION; ENERGY; OPERATORS; SYSTEMS; STATES; LIMIT;
D O I
10.1007/s10955-012-0562-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider alloy type random Schrodinger operators on a cubic lattice whose randomness is generated by the sign-indefinite single-site potential. We derive Anderson localization for this class of models in the Lifshitz tails regime, i.e. when the coupling parameter lambda is small, for the energies Ea parts per thousand currency signa'C lambda (2).
引用
收藏
页码:1006 / 1039
页数:34
相关论文
共 50 条
  • [41] Localization for the Random Displacement Model at Weak Disorder
    Ghribi, Fatma
    Klopp, Frederic
    ANNALES HENRI POINCARE, 2010, 11 (1-2): : 127 - 149
  • [42] The invariant measures at weak disorder for the two-line Anderson model
    Dorlas, TC
    Pulé, JV
    REVIEWS IN MATHEMATICAL PHYSICS, 2004, 16 (05) : 639 - 673
  • [43] Controlling Anderson localization in disordered heterostrctures with Levy-type distribution
    Ardakani, Abbas Ghasempour
    Nezhadhaghighi, Mohsen Ghasemi
    JOURNAL OF OPTICS, 2015, 17 (10)
  • [44] Magnetic Response and Valence Fluctuations in the Extended Anderson Lattice Model with Quasiperiodicity
    Shinzaki, Ryu
    Nasu, Joji
    Koga, Akihisa
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2016, 85 (11)
  • [45] Many-body localization transition in a lattice model of interacting fermions: Statistics of renormalized hoppings in configuration space
    Monthus, Cecile
    Garel, Thomas
    PHYSICAL REVIEW B, 2010, 81 (13)
  • [46] Phase diagram, energy scales, and nonlocal correlations in the Anderson lattice model
    Tanaskovic, D.
    Haule, K.
    Kotliar, G.
    Dobrosavljevic, V.
    PHYSICAL REVIEW B, 2011, 84 (11):
  • [47] Zero Energy Anomaly in One-Dimensional Anderson Lattice with Exponentially Correlated Weak Diagonal Disorder
    Wang Zong-Guo
    Qin Shao-Jing
    Kang Kai
    Wang Chui-Lin
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2012, 58 (02) : 280 - 284
  • [48] Zero Energy Anomaly in One-Dimensional Anderson Lattice with Exponentially Correlated Weak Diagonal Disorder
    王宗国
    覃绍京
    康凯
    王垂林
    CommunicationsinTheoreticalPhysics, 2012, 58 (08) : 280 - 284
  • [49] Rise and Fall of Anderson Localization by Lattice Vibrations: A Time-Dependent Machine Learning Approach
    Zimmermann, Yoel
    Keski-Rahkonen, Joonas
    Graf, Anton M.
    Heller, Eric J.
    ENTROPY, 2024, 26 (07)
  • [50] Quantum embedding description of the Anderson lattice model with the ghost Gutzwiller approximation
    Frank, Marius S.
    Lee, Tsung-Han
    Bhattacharyya, Gargee
    Tsang, Pak Ki Henry
    Quito, Victor L.
    Dobrosavljevic, Vladimir
    Christiansen, Ove
    Lanata, Nicola
    PHYSICAL REVIEW B, 2021, 104 (08)