The Weak Localization for the Alloy-Type Anderson Model on a Cubic Lattice

被引:11
|
作者
Cao, Zhenwei [1 ]
Elgart, Alexander [1 ]
机构
[1] Virginia Tech, Dept Math, Blacksburg, VA 24061 USA
基金
美国国家科学基金会;
关键词
Anderson localization; Weak disorder; Feynman diagrams; Spectral analysis; LIFSHITZ TAILS; DISORDER LOCALIZATION; ENERGY; OPERATORS; SYSTEMS; STATES; LIMIT;
D O I
10.1007/s10955-012-0562-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider alloy type random Schrodinger operators on a cubic lattice whose randomness is generated by the sign-indefinite single-site potential. We derive Anderson localization for this class of models in the Lifshitz tails regime, i.e. when the coupling parameter lambda is small, for the energies Ea parts per thousand currency signa'C lambda (2).
引用
收藏
页码:1006 / 1039
页数:34
相关论文
共 50 条
  • [31] Spectral Analysis of Lattice Schrödinger-Type Operators Associated with the Nonstationary Anderson Model and Intermittency
    Han, Dan
    Molchanov, Stanislav
    Vainberg, Boris
    MATHEMATICS, 2025, 13 (05)
  • [32] Singular Behavior of Eigenstates in Anderson's Model of Localization
    Johri, S.
    Bhatt, R. N.
    PHYSICAL REVIEW LETTERS, 2012, 109 (07)
  • [33] Complexity of two-dimensional quasimodes at the transition from weak scattering to Anderson localization
    Vanneste, C.
    Sebbah, P.
    PHYSICAL REVIEW A, 2009, 79 (04):
  • [34] The S=1 Underscreened Anderson Lattice model for Uranium compounds
    Thomas, C.
    Simoes, A. S. R.
    Iglesias, J. R.
    Lacroix, C.
    Perkins, N. B.
    Coqblin, B.
    INTERNATIONAL CONFERENCE ON STRONGLY CORRELATED ELECTRON SYSTEMS (SCES 2010), 2011, 273
  • [35] Anderson localization for quasi-periodic lattice schrodinger operators on zd, d arbitrary
    Bourgain, Jean
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2007, 17 (03) : 682 - 706
  • [36] Localization for the Random Displacement Model at Weak Disorder
    Fatma Ghribi
    Frédéric Klopp
    Annales Henri Poincaré, 2010, 11 : 127 - 149
  • [37] LOCALIZATION FOR AN ANDERSON-BERNOULLI MODEL WITH GENERIC INTERACTION POTENTIAL
    Boumaza, Hakim
    TOHOKU MATHEMATICAL JOURNAL, 2013, 65 (01) : 57 - 74
  • [38] Observing localization and delocalization of the flat-band states in an acoustic cubic lattice
    Shen, Ya-Xi
    Peng, Yu-Gui
    Cao, Pei-Chao
    Li, Jensen
    Zhu, Xue-Feng
    PHYSICAL REVIEW B, 2022, 105 (10)
  • [39] Anderson localization in a two-dimensional random gap model
    Hill, A.
    Ziegler, K.
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2014, 56 : 172 - 176
  • [40] Anomalously suppressed localization in the two-channel Anderson model
    Ba Phi Nguyen
    Kim, Kihong
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2012, 24 (13)