The Weak Localization for the Alloy-Type Anderson Model on a Cubic Lattice

被引:11
|
作者
Cao, Zhenwei [1 ]
Elgart, Alexander [1 ]
机构
[1] Virginia Tech, Dept Math, Blacksburg, VA 24061 USA
基金
美国国家科学基金会;
关键词
Anderson localization; Weak disorder; Feynman diagrams; Spectral analysis; LIFSHITZ TAILS; DISORDER LOCALIZATION; ENERGY; OPERATORS; SYSTEMS; STATES; LIMIT;
D O I
10.1007/s10955-012-0562-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider alloy type random Schrodinger operators on a cubic lattice whose randomness is generated by the sign-indefinite single-site potential. We derive Anderson localization for this class of models in the Lifshitz tails regime, i.e. when the coupling parameter lambda is small, for the energies Ea parts per thousand currency signa'C lambda (2).
引用
收藏
页码:1006 / 1039
页数:34
相关论文
共 50 条
  • [1] The Weak Localization for the Alloy-Type Anderson Model on a Cubic Lattice
    Zhenwei Cao
    Alexander Elgart
    Journal of Statistical Physics, 2012, 148 : 1006 - 1039
  • [2] Wegner Estimate for Discrete Alloy-type Models
    Ivan Veselić
    Annales Henri Poincaré, 2010, 11 : 991 - 1005
  • [3] LIFSHITZ TAILS AND LOCALIZATION IN THE THREE-DIMENSIONAL ANDERSON MODEL
    Elgart, Alexander
    DUKE MATHEMATICAL JOURNAL, 2009, 146 (02) : 331 - 360
  • [4] LIFSHITZ TAILS FOR GENERALIZED ALLOY-TYPE RANDOM SCHRODINGER OPERATORS
    Klopp, Frederic
    Nakamura, Shu
    ANALYSIS & PDE, 2010, 3 (04): : 409 - 426
  • [5] SPECTRAL PROPERTIES OF DISCRETE ALLOY-TYPE MODELS
    Tautenhahn, Martin
    Veselic, Ivan
    XVITH INTERNATIONAL CONGRESS ON MATHEMATICAL PHYSICS, 2010, : 551 - 555
  • [6] Wegner Estimate for Discrete Alloy-type Models
    Veselic, Ivan
    ANNALES HENRI POINCARE, 2010, 11 (05): : 991 - 1005
  • [7] Anderson Localization on the Bethe Lattice: Nonergodicity of Extended States
    De Luca, A.
    Altshuler, B. L.
    Kravtsov, V. E.
    Scardicchio, A.
    PHYSICAL REVIEW LETTERS, 2014, 113 (04)
  • [8] Localization near the edge for the Anderson Bernoulli model on the two dimensional lattice
    Ding, Jian
    Smart, Charles K.
    INVENTIONES MATHEMATICAE, 2020, 219 (02) : 467 - 506
  • [9] Weak chaos in the disordered nonlinear Schrodinger chain: Destruction of Anderson localization by Arnold diffusion
    Basko, D. M.
    ANNALS OF PHYSICS, 2011, 326 (07) : 1577 - 1655
  • [10] Odd-even effect of the mosaic modulation period of quasiperiodic hopping on the Anderson localization in a one-dimensional lattice model
    Zhang, Yi-Cai
    Yuan, Rong
    Song, Shuwei
    Hu, Mingpeng
    Liu, Chaofei
    Wang, Yongjian
    PHYSICAL REVIEW B, 2025, 111 (06)