Multiscale micromechanical analysis of alkali-activated fly ash-slag paste

被引:156
|
作者
Fang, Guohao [1 ]
Zhang, Mingzhong [1 ]
机构
[1] UCL, Dept Civil Environm & Geomat Engn, London WC1E 6BT, England
基金
英国工程与自然科学研究理事会;
关键词
Alkali-activated concrete; Microstructure; Elastic modulus; Hardness; Nanoindentation; BLAST-FURNACE SLAG; A-S-H; CEMENT-BASED MATERIALS; MECHANICAL-PROPERTIES; PORE STRUCTURE; ALUMINOSILICATE HYDRATE; ENGINEERING PROPERTIES; STRENGTH PROPERTIES; PHASE EVOLUTION; ELASTIC-MODULUS;
D O I
10.1016/j.cemconres.2020.106141
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Current demand for highly sustainable concrete, e.g. alkali-activated fly ash-slag (AAFS) concrete, urges understanding the links between microstructure and micromechanical properties of this binder. This paper presents a systematic investigation into the microstructure and micromechanical properties of AAFS paste from nano-scale to micro-scale. Nanoindentation was used to evaluate the micromechanical properties, while the microstructure was characterised using Si-29 nuclear magnetic resonance, Fourier transform infrared spectroscopy, backscattered electron microscopy, and mercury intrusion porosimetry. The results indicate that N-A-S-H gels have a relatively low elastic modulus due to their high level of structural disorder and gel porosity, while the CA-S-H gels and N-C-A-S-H gels with a low level of structural disorder and gel porosity have a relatively high elastic modulus. The elasticity of reaction products and their relative volumetric proportions mainly determine the macroscopic elasticity of AAFS paste, while the porosity and pore size distribution primarily condition its macroscopic strength.
引用
收藏
页数:20
相关论文
共 50 条
  • [42] Curing Conditions of Alkali-Activated Fly Ash and Slag Mortar
    Dong, Minhao
    Elchalakani, Mohamed
    Karrech, Ali
    JOURNAL OF MATERIALS IN CIVIL ENGINEERING, 2020, 32 (06)
  • [43] Magnesia Modification of Alkali-Activated Slag Fly Ash Cement
    Shen Weiguo
    Wang Yiheng
    Zhang Tao
    Zhou Mingkai
    Li Jiasheng
    Cui Xiaoyu
    JOURNAL OF WUHAN UNIVERSITY OF TECHNOLOGY-MATERIALS SCIENCE EDITION, 2011, 26 (01): : 121 - 125
  • [44] Effect of Active MgO on Compensated Drying Shrinkage and Mechanical Properties of Alkali-Activated Fly Ash-Slag Materials
    Ma, Hongqiang
    Li, Shiru
    Lei, Zelong
    Wu, Jialong
    Yuan, Xinhua
    Niu, Xiaoyan
    BUILDINGS, 2025, 15 (02)
  • [45] Mechanical and microstructural properties of alkali-activated fly ash-slag material under sustained moderate temperature effect
    Ma, Hongqiang
    Wu, Chao
    CEMENT & CONCRETE COMPOSITES, 2022, 134
  • [46] Strength and Ultrasonic Characteristics of Alkali-Activated Fly Ash-Slag Geopolymer Concrete after Exposure to Elevated Temperatures
    Ren, Weibo
    Xu, Jinyu
    Bai, Erlei
    JOURNAL OF MATERIALS IN CIVIL ENGINEERING, 2016, 28 (02)
  • [47] Engineering properties and sustainability of alkali-activated fly ash-slag mortar containing carbon-negative aggregates
    Wang, Yansong
    Hu, Yukun
    Mangabhai, Raman
    Zhang, Mingzhong
    CONSTRUCTION AND BUILDING MATERIALS, 2025, 471
  • [48] External Sulphate Attack on Alkali-Activated Slag and Slag/Fly Ash Concrete
    Bondar, Dali
    Nanukuttan, Sreejith
    BUILDINGS, 2022, 12 (02)
  • [49] Chemo-mechanical properties of alkali-activated slag/fly ash paste incorporating white mud
    Sun, Renjuan
    Fang, Chen
    Zhang, Hongzhi
    Ling, Yifeng
    Feng, Jingjing
    Qi, Hui
    Ge, Zhi
    CONSTRUCTION AND BUILDING MATERIALS, 2021, 291
  • [50] Micromechanical Properties of Alkali-Activated Slag-Based Paste Explored by Nanoindentation
    Chuang Y.-C.
    Chou Y.-T.
    Chen C.-T.
    Chen H.-A.
    Journal of the Chinese Institute of Civil and Hydraulic Engineering, 2022, 34 (05): : 435 - 440