Mid-infrared nanoantenna arrays on silicon and CaF2 substrates for sensing applications

被引:22
作者
Businaro, L. [1 ]
Limaj, O. [2 ]
Giliberti, V. [2 ]
Ortolani, M. [1 ]
Di Gaspare, A. [1 ]
Grenci, G. [3 ]
Ciasca, G. [1 ]
Gerardino, A. [1 ]
de Ninno, A. [1 ]
Lupi, S. [2 ]
机构
[1] CNR, Inst Photon & Nanotechnol, I-00156 Rome, Italy
[2] Univ Roma La Sapienza, I-00185 Rome, Italy
[3] CNR, Inst Officina Mat, I-34149 Trieste, Italy
关键词
Nanoantenna arrays; FTIR; Plasmon resonance; Microfluidic devices;
D O I
10.1016/j.mee.2012.02.025
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We report on the fabrication and systematic characterization of nanoantenna arrays with several different geometries realized both on standard silicon (Si) substrates and Calcium Fluoride (CaF2) substrates aimed at the realization of a mid-Infrared protein detector. In particular, we present a novel nanofabrication procedure which allows the adoption of CaF2 in a standard lithographic process with results comparable to the ones obtained on silicon wafers. The transmittance and reflectance spectra of the nanoantennas, were acquired by means of an Infrared microscope coupled to a Michelson Interferometer. In all the nanoantenna devices, the plasmonic resonance follows a linear scaling relation: a lattice parameter change of a +/-(5-10)%, indeed, results in a shift of the Si (1,0) plasmonic resonance frequency which is proportional to 1/a. This scaling behavior offers a useful tool for device frequency tuning, which can be used to obtain a fine spectral overlap with the protein amide-I and amide-II bands. A Lorentzian analysis of the resonance peaks reveals that our nanostructures have an high Q factor (Q = v(0)/Delta v), demonstrating the effectiveness of our fabrication procedures. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:197 / 200
页数:4
相关论文
共 8 条
  • [1] Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays
    Adato, Ronen
    Yanik, Ahmet A.
    Amsden, Jason J.
    Kaplan, David L.
    Omenetto, Fiorenzo G.
    Hong, Mi K.
    Erramilli, Shyamsunder
    Altug, Hatice
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (46) : 19227 - 19232
  • [2] Infrared microspectroscopy of biochemical response of living cells in microfabricated devices
    Birarda, Giovanni
    Grenci, Gianluca
    Businaro, Luca
    Marmiroli, Benedetta
    Pacor, Sabrina
    Piccirilli, Federica
    Vaccari, Lisa
    [J]. VIBRATIONAL SPECTROSCOPY, 2010, 53 (01) : 6 - 11
  • [3] Fabrication of a microfluidic platform for investigating dynamic biochemical processes in living samples by FTIR microspectroscopy
    Birarda, Giovanni
    Grenci, Gianluca
    Businaro, Luca
    Marmiroli, Benedetta
    Pacor, Sabrina
    Vaccari, Lisa
    [J]. MICROELECTRONIC ENGINEERING, 2010, 87 (5-8) : 806 - 809
  • [4] Midinfrared surface-plasmon resonance: A novel biophysical tool for studying living cells
    Golosovsky, M.
    Lirtsman, V.
    Yashunsky, V.
    Davidov, D.
    Aroeti, B.
    [J]. JOURNAL OF APPLIED PHYSICS, 2009, 105 (10)
  • [5] Grenci G., 2012, MICROELECTR IN PRESS
  • [6] Midinfrared surface plasmon sensor based on a substrateless metal mesh
    Limaj, O.
    Lupi, S.
    Mattioli, F.
    Leoni, R.
    Ortolani, M.
    [J]. APPLIED PHYSICS LETTERS, 2011, 98 (09)
  • [7] Substrateless micrometric metal mesh for mid-infrared plasmonic sensors
    Mattioli, F.
    Ortolani, M.
    Lupi, S.
    Limaj, O.
    Leoni, R.
    [J]. APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2011, 103 (03): : 627 - 630
  • [8] Surface plasmon resonance: towards an understanding of the mechanisms of biological molecular recognition
    McDonnell, JM
    [J]. CURRENT OPINION IN CHEMICAL BIOLOGY, 2001, 5 (05) : 572 - 577