Influence of nanotube length and density on the plasmonic terahertz response of single-walled carbon nanotubes

被引:26
作者
Karlsen, P. [1 ]
Shuba, M. V. [2 ]
Beckerleg, C. [1 ]
Yuko, D. I. [2 ]
Kuzhir, P. P. [2 ]
Maksimenko, S. A. [2 ]
Ksenevich, V. [3 ]
Viet, Ho [3 ]
Nasibulin, A. G. [4 ,5 ]
Tenne, R. [6 ]
Hendry, E. [1 ]
机构
[1] Univ Exeter, Sch Phys, Stocker Rd, Exeter EX4 4QL, Devon, England
[2] Belarusian State Univ, Inst Nucl Problems, Bobruiskaya 11, Minsk 220050, BELARUS
[3] Belarusian State Univ, Dept Phys, Nezalezhnastsi Ave 4, Minsk 220030, BELARUS
[4] Skolkovo Innovat Ctr, Skolkovo Inst Sci & Technol, Bldg 3, Moscow 143026, Russia
[5] Aalto Univ, Sch Sci, Dept Appl Phys, POB 15100, FI-00076 Espoo, Finland
[6] Weizmann Inst Sci, Dept Mat & Interfaces, IL-76100 Rehovot, Israel
基金
英国工程与自然科学研究理事会; 俄罗斯科学基金会;
关键词
carbon nanotubes; terahertz; dielectric properties; percolation; temperature; plasmon; tungsten disulfide; ELECTRICAL-PROPERTIES; OPTICAL-RESPONSE; CONDUCTIVITY; MECHANISM; THZ;
D O I
10.1088/1361-6463/aa96ef
中图分类号
O59 [应用物理学];
学科分类号
摘要
We measure the conductivity spectra of thin films comprising bundled single-walled carbon nanotubes (CNTs) of different average lengths in the frequency range 0.3-1000 THz and temperature interval 10-530 K. The observed temperature-induced changes in the terahertz conductivity spectra are shown to depend strongly on the average CNT length, with a conductivity around 1 THz that increases/decreases as the temperature increases for short/long tubes. This behaviour originates from the temperature dependence of the electron scattering rate, which we obtain from Drude fits of the measured conductivity in the range 0.3-2 THz for 10 mu m length CNTs. This increasing scattering rate with temperature results in a subsequent broadening of the observed THz conductivity peak at higher temperatures and a shift to lower frequencies for increasing CNT length. Finally, we show that the change in conductivity with temperature depends not only on tube length, but also varies with tube density. We record the effective conductivities of composite films comprising mixtures of WS2 nanotubes and CNTs versus CNT density for frequencies in the range 0.3-1 THz, finding that the conductivity increases/decreases for low/high density films as the temperature increases. This effect arises due to the density dependence of the effective length of conducting pathways in the composite films, which again leads to a shift and temperature dependent broadening of the THz conductivity peak.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Single-walled carbon nanotube diameter
    Jost, O
    Gorbunov, A
    Liu, XJ
    Pompe, W
    Fink, J
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2004, 4 (04) : 433 - 440
  • [22] Wavenumber-Domain Theory of Terahertz Single-Walled Carbon Nanotube Antenna
    Zhao, Mo
    Yu, Minrui
    Blick, Robert H.
    IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2012, 18 (01) : 166 - 175
  • [23] Influence of Diameter, Length, and Chirality of Single-Walled Carbon Nanotubes on Their Free Radical Scavenging Capability
    Galano, Annia
    JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (43) : 18487 - 18491
  • [24] Electrical Properties of Single-Walled/Multi-Walled Carbon-Nanotubes Filled Polycarbonate Nanocomposites
    Sain, P. K.
    Goyal, R. K.
    Prasad, Y. V. S. S.
    Bhargava, A. K.
    JOURNAL OF ELECTRONIC MATERIALS, 2017, 46 (01) : 458 - 466
  • [25] Characterization of the radiation from single-walled zig-zag carbon nanotubes at terahertz range
    Wu Qun
    Wang Yue
    Wu Yu-Ming
    Zhuang Lei-Lei
    Li Le-Wei
    Gui Tai-Long
    CHINESE PHYSICS B, 2010, 19 (06)
  • [26] Formylation of Single-Walled Carbon Nanotubes
    Suri, Anil
    Coleman, Karl S.
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2012, 12 (03) : 2929 - 2933
  • [27] Radiation effects in single-walled carbon nanotube papers
    Cress, Cory D.
    Schauerman, Christopher M.
    Landi, Brian J.
    Messenger, Scott R.
    Raffaelle, Ryne P.
    Walters, Robert J.
    JOURNAL OF APPLIED PHYSICS, 2010, 107 (01)
  • [28] Piezoresistance of single-walled carbon nanotubes
    Stampfer, C.
    Helbling, T.
    Jungen, A.
    Hierold, C.
    TRANSDUCERS '07 & EUROSENSORS XXI, DIGEST OF TECHNICAL PAPERS, VOLS 1 AND 2, 2007,
  • [29] Resistance measurement of isolated single-walled carbon nanotubes
    Zhao, Bo
    Qi, Hongxia
    Xu, Dong
    MEASUREMENT, 2012, 45 (05) : 1297 - 1300
  • [30] Terahertz Wave Electric Field Oscillation from Single-Walled Carbon Nanotube Antenna
    Wang, Yue
    Wang, Xuan
    Wang, Qi
    Mei, Jinshuo
    Zhang, Kuang
    Wu, Qun
    Zhang, Liying
    INTEGRATED FERROELECTRICS, 2014, 153 (01) : 120 - 125