Cardiac MRI Segmentation with Strong Anatomical Guarantees

被引:48
作者
Painchaud, Nathan [1 ]
Skandarani, Youssef [1 ,2 ]
Judge, Thierry [1 ]
Bernard, Olivier [3 ]
Lalande, Alain [2 ]
Jodoin, Pierre-Marc [1 ]
机构
[1] Univ Sherbrooke, Dept Comp Sci, Sherbrooke, PQ, Canada
[2] Univ Bourgogne Franche Comte, Dijon, France
[3] Univ Lyon, Lyon, France
来源
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2019, PT II | 2019年 / 11765卷
关键词
CNN; Variational autoencoder; Cardiac MRI segmentation;
D O I
10.1007/978-3-030-32245-8_70
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recent publications have shown that the segmentation accuracy of modern-day convolutional neural networks (CNN) applied on cardiac MRI can reach the inter-expert variability, a great achievement in this area of research. However, despite these successes, CNNs still produce anatomically inaccurate segmentations as they provide no guarantee on the anatomical plausibility of their outcome, even when using a shape prior. In this paper, we propose a cardiac MRI segmentation method which always produces anatomically plausible results. At the core of the method is an adversarial variational autoencoder (aVAE) whose latent space encodes a smooth manifold on which lies a large spectrum of valid cardiac shapes. This aVAE is used to automatically warp anatomically inaccurate cardiac shapes towards a close but correct shape. Our method can accommodate any cardiac segmentation method and convert its anatomically implausible results to plausible ones without affecting its overall geometric and clinical metrics. With our method, CNNs can now produce results that are both within the inter-expert variability and always anatomically plausible.
引用
收藏
页码:632 / 640
页数:9
相关论文
共 11 条
[1]  
[Anonymous], 2013, ICLR
[2]  
[Anonymous], 2016, ICLR
[3]  
[Anonymous], 2016, ICLR
[4]   Deep Learning Techniques for Automatic MRI Cardiac Multi-Structures Segmentation and Diagnosis: Is the Problem Solved? [J].
Bernard, Olivier ;
Lalande, Alain ;
Zotti, Clement ;
Cervenansky, Frederick ;
Yang, Xin ;
Heng, Pheng-Ann ;
Cetin, Irem ;
Lekadir, Karim ;
Camara, Oscar ;
Gonzalez Ballester, Miguel Angel ;
Sanroma, Gerard ;
Napel, Sandy ;
Petersen, Steffen ;
Tziritas, Georgios ;
Grinias, Elias ;
Khened, Mahendra ;
Kollerathu, Varghese Alex ;
Krishnamurthi, Ganapathy ;
Rohe, Marc-Michel ;
Pennec, Xavier ;
Sermesant, Maxime ;
Isensee, Fabian ;
Jaeger, Paul ;
Maier-Hein, Klaus H. ;
Full, Peter M. ;
Wolf, Ivo ;
Engelhardt, Sandy ;
Baumgartner, Christian F. ;
Koch, Lisa M. ;
Wolterink, Jelmer M. ;
Isgum, Ivana ;
Jang, Yeonggul ;
Hong, Yoonmi ;
Patravali, Jay ;
Jain, Shubham ;
Humbert, Olivier ;
Jodoin, Pierre-Marc .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2018, 37 (11) :2514-2525
[5]  
Bishop C.M., 2006, J ELECTRON IMAGING, V16, P049901, DOI DOI 10.1117/1.2819119
[6]   Automatic 3D Bi-Ventricular Segmentation of Cardiac Images by a Shape-Refined Multi-Task Deep Learning Approach [J].
Duan, Jinming ;
Bello, Ghalib ;
Schlemper, Jo ;
Bai, Wenjia ;
Dawes, Timothy J. W. ;
Biffi, Carlo ;
de Marvao, Antonio ;
Doumou, Georgia ;
O'Regan, Declan P. ;
Rueckert, Daniel .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2019, 38 (09) :2151-2164
[7]  
Kingma D.P., 2015, P INT C LEARNING REP
[8]  
Koller D., 2009, Probabilistic Graphical Models: Principles and Techniques
[9]  
Oktay O., 2017, IEEE T MED IMAGING, V37, P384
[10]   Recent Advances in Cardiovascular Magnetic Resonance Techniques and Applications [J].
Salerno, Michael ;
Sharif, Behzad ;
Arheden, Hakan ;
Kumar, Andreas ;
Axel, Leon ;
Li, Debiao ;
Neubauer, Stefan .
CIRCULATION-CARDIOVASCULAR IMAGING, 2017, 10 (06)