Critical point theory for asymptotically quadratic functionals and applications to problems with resonance

被引:276
作者
Bartsch, T [1 ]
Li, SJ [1 ]
机构
[1] ACAD SINICA,INST MATH,BEIJING 100080,PEOPLES R CHINA
关键词
critical groups; linking; resonance problems; asymptotically quadratic functionals; asymptotically linear Dirichlet problems;
D O I
10.1016/0362-546X(95)00167-T
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
[No abstract available]
引用
收藏
页码:419 / 441
页数:23
相关论文
共 19 条
[1]   PERIODIC-SOLUTIONS OF ASYMPTOTICALLY LINEAR HAMILTONIAN-SYSTEMS [J].
AMANN, H ;
ZEHNDER, E .
MANUSCRIPTA MATHEMATICA, 1980, 32 (1-2) :149-189
[2]  
Amann H., 1980, Ann. Scuola Norm. Sup. Pisa Cl. Sci, V7, P539
[3]   ABSTRACT CRITICAL-POINT THEOREMS AND APPLICATIONS TO SOME NON-LINEAR PROBLEMS WITH STRONG RESONANCE AT INFINITY [J].
BARTOLO, P ;
BENCI, V ;
FORTUNATO, D .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1983, 7 (09) :981-1012
[4]  
Brezis H., 1978, ANN SCUOLA NORM SUP, V5, P225
[5]   ON THE EXISTENCE OF A NONTRIVIAL SOLUTION TO NONLINEAR PROBLEMS AT RESONANCE [J].
CAPOZZI, A ;
LUPO, D ;
SOLIMINI, S .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1989, 13 (02) :151-163
[6]  
CERAMI G, 1978, RENDICONTI ACCADEMIA, V112, P332
[7]  
Chang K. C., 1993, INFINITE DIMENSIONAL, DOI DOI 10.1007/978-1-4612-0385-8
[8]   SOLUTIONS OF ASYMPTOTICALLY LINEAR OPERATOR-EQUATIONS VIA MORSE-THEORY [J].
CHANG, KC .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1981, 34 (05) :693-712
[9]  
CHANG KC, 1983, CHINESE ANN MATH SER, V64, P381
[10]   MORSE-TYPE INDEX THEORY FOR FLOWS AND PERIODIC-SOLUTIONS FOR HAMILTONIAN EQUATIONS [J].
CONLEY, C ;
ZEHNDER, E .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1984, 37 (02) :207-253