An a-posteriori error estimator for linear elastic fracture mechanics using the stable generalized/extended finite element method

被引:21
作者
Lins, R. M. [1 ]
Ferreira, M. D. C. [1 ]
Proenca, S. P. B. [1 ]
Duarte, C. A. [2 ]
机构
[1] Univ Sao Paulo, Sao Carlos Sch Engn EESC, Dept Struct Engn SET, BR-13566590 Sao Carlos, SP, Brazil
[2] Univ Illinois, Dept Civil & Environm Engn, Newmark Lab, Urbana, IL 61801 USA
关键词
Error estimation; Generalized FEM; Extended FEM; Blending elements; Effectivity index; SUPERCONVERGENT PATCH RECOVERY; PARTITION;
D O I
10.1007/s00466-015-1212-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this study, a recovery-based a-posteriori error estimator originally proposed for the Corrected XFEM is investigated in the framework of the stable generalized FEM (SGFEM). Both Heaviside and branch functions are adopted to enrich the approximations in the SGFEM. Some necessary adjustments to adapt the expressions defining the enhanced stresses in the original error estimator are discussed in the SGFEM framework. Relevant aspects such as effectivity indexes, error distribution, convergence rates and accuracy of the recovered stresses are used in order to highlight the main findings and the effectiveness of the error estimator. Two benchmark problems of the 2-D fracture mechanics are selected to assess the robustness of the error estimator hereby investigated. The main findings of this investigation are: the SGFEM shows higher accuracy than G/XFEM and a reduced sensitivity to blending element issues. The error estimator can accurately capture these features of both methods.
引用
收藏
页码:947 / 965
页数:19
相关论文
共 39 条
[1]   A posteriori error estimation in finite element analysis [J].
Ainsworth, M ;
Oden, JT .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1997, 142 (1-2) :1-88
[2]   Stable Generalized Finite Element Method (SGFEM) [J].
Babuska, I. ;
Banerjee, U. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2012, 201 :91-111
[3]  
Babuska I, 1997, INT J NUMER METH ENG, V40, P727, DOI 10.1002/(SICI)1097-0207(19970228)40:4<727::AID-NME86>3.0.CO
[4]  
2-N
[5]  
BABUSKA I, 1995, BN1185 U MAR I PHYS
[6]  
Babuska I, 2011, 1107 ICES U TEX I CO
[7]  
Babuska I, 1998, 9801 TICAM U TEX
[8]   GENERALIZED FINITE ELEMENT METHODS - MAIN IDEAS, RESULTS AND PERSPECTIVE [J].
Babuska, Ivo ;
Banerjee, Uday ;
Osborn, John E. .
INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS, 2004, 1 (01) :67-103
[9]   Generalized finite element method in structural nonlinear analysis -: a p-adaptive strategy [J].
Barros, FB ;
Proença, SPB ;
de Barcellos, CS .
COMPUTATIONAL MECHANICS, 2004, 33 (02) :95-107
[10]  
Belytschko T, 1999, INT J NUMER METH ENG, V45, P601, DOI 10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO