Semicontinuous viscosity solutions for quasiconvex Hamiltonians

被引:4
作者
Barron, Emmanuel N. [1 ]
机构
[1] Loyola Univ Chicago, Dept Math & Stat, Chicago, IL 60660 USA
基金
美国国家科学基金会;
关键词
JACOBI EQUATIONS;
D O I
10.1016/j.crma.2013.09.021
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The main theorem connecting convex Hamiltonians and semicontinuous viscosity solutions due to Barron and Jensen is extended to quasiconvex Hamiltonians. Some applications are indicated. (C) 2013 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:737 / 741
页数:5
相关论文
共 10 条
[1]  
Alvarez O, 1999, INDIANA U MATH J, V48, P993
[2]  
[Anonymous], 1994, MATH APPL
[3]  
Bardi M., 1997, Optimal control and viscosity solutions of HamiltonJacobi-Bellman equations
[4]  
BARRON EN, 1990, COMMUN PART DIFF EQ, V15, P1713
[5]  
Barron EN, 1996, APPL MATH OPT, V34, P325, DOI 10.1007/BF01182629
[6]  
Barron EN, 1997, COMMUN PART DIFF EQ, V22, P1141
[7]  
Barron EN, 1997, APPL MATH OPT, V35, P237
[8]   LOWER SEMICONTINUOUS SOLUTIONS OF HAMILTON-JACOBI-BELLMAN EQUATIONS [J].
FRANKOWSKA, H .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1993, 31 (01) :257-272
[9]   A generalization of a theorem of Barron and Jensen and a comparison theorem for lower semicontinuous viscosity solutions [J].
Ishii, H .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2001, 131 :137-154
[10]   DISCONTINUOUS VISCOSITY SOLUTIONS TO DIRICHLET PROBLEMS FOR HAMILTON-JACOBI EQUATIONS WITH CONVEX HAMILTONIANS [J].
SORAVIA, P .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1993, 18 (9-10) :1493-1514