Multiparticle collision dynamics: GPU accelerated particle-based mesoscale hydrodynamic simulations

被引:47
|
作者
Westphal, E. [1 ,2 ]
Singh, S. P. [3 ]
Huang, C. -C. [3 ]
Gompper, G. [3 ,4 ]
Winkler, R. G. [4 ]
机构
[1] Forschungszentrum Julich, Peter Grunberg Inst, D-52425 Julich, Germany
[2] Forschungszentrum Julich, Julich Ctr Neutron Sci, D-52425 Julich, Germany
[3] Forschungszentrum Julich, Inst Complex Syst, D-52425 Julich, Germany
[4] Forschungszentrum Julich, Inst Adv Simulat, D-52425 Julich, Germany
关键词
Multiparticle collision dynamics; CUDA; GPU; Mesoscale hydrodynamic simulations; RED-BLOOD-CELLS; MOLECULAR-DYNAMICS; TRANSPORT-COEFFICIENTS; MESOSCOPIC MODEL; STAR POLYMERS; FLOW; COLLOIDS; GENERATION; VESICLES; EQUATION;
D O I
10.1016/j.cpc.2013.10.004
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The Compute Unified Device Architecture (CUDA) programming language on a graphics processing unit (GPU) is exploited to develop a GPU-based simulation program for the multiparticle collision dynamics (MPC) approach, a particle-based mesoscale hydrodynamic simulation technique. The coarse-grained description of the fluid dynamics in terms of ballistic motion and local stochastic interactions of particles renders MPC inherently highly parallel. We achieve a 1-2 orders of magnitude performance gain over a comparable CPU-core version of the algorithm, depending on the implementation (single threaded or OpenMP). Various aspects of the implementation are discussed in the context of an optimized performance. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:495 / 503
页数:9
相关论文
共 50 条
  • [41] Efficient and Large-Scale Dissipative Particle Dynamics Simulations on GPU
    Yang, Keda
    Bai, Zhiqiang
    Su, Jiaye
    Guo, Hongxia
    SOFT MATERIALS, 2014, 12 (02) : 185 - 196
  • [42] Hydrodynamically Coupled Brownian Dynamics: A coarse-grain particle-based Brownian dynamics technique with hydrodynamic interactions for modeling self-developing flow of polymer solutions
    Ahuja, V. R.
    van der Gucht, J.
    Briels, W. J.
    JOURNAL OF CHEMICAL PHYSICS, 2018, 148 (03)
  • [43] GPU-accelerated Monte Carlo simulation of particle coagulation based on the inverse method
    Wei, J.
    Kruis, F. E.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 249 : 67 - 79
  • [44] A fast adaptive load balancing method for parallel particle-based simulations
    Zhang, Dongliang
    Jiang, Changjun
    Li, Shu
    SIMULATION MODELLING PRACTICE AND THEORY, 2009, 17 (06) : 1032 - 1042
  • [45] Self-consistent description of electrokinetic phenomena in particle-based simulations
    Hernandez-Ortiz, Juan P.
    de Pablo, Juan J.
    JOURNAL OF CHEMICAL PHYSICS, 2015, 143 (01)
  • [46] On the use of reactive multiparticle collision dynamics to gather particulate level information from simulations of epidemic models
    Memon, Zaib Un Nisa
    Rohlf, Katrin
    AIP ADVANCES, 2024, 14 (09)
  • [47] Particle-based membrane model for mesoscopic simulation of cellular dynamics
    Sadeghi, Mohsen
    Weikl, Thomas R.
    Noe, Frank
    JOURNAL OF CHEMICAL PHYSICS, 2018, 148 (04)
  • [48] GPU accelerated online multi-particle beam dynamics simulator for ion linear particle accelerators
    Pang, X.
    Rybarcyk, L.
    COMPUTER PHYSICS COMMUNICATIONS, 2014, 185 (03) : 744 - 753
  • [49] Inflow/Outflow Boundary Conditions for Particle-Based Blood Flow Simulations: Application to Arterial Bifurcations and Trees
    Lykov, Kirill
    Li, Xuejin
    Lei, Huan
    Pivkin, Igor V.
    Karniadakis, George Em
    PLOS COMPUTATIONAL BIOLOGY, 2015, 11 (08)
  • [50] Failure-mode transition in transient polymer networks with particle-based simulations
    Sprakel, J.
    Spruijt, E.
    van der Gucht, J.
    Padding, J. T.
    Briels, W. J.
    SOFT MATTER, 2009, 5 (23) : 4748 - 4756