Multiparticle collision dynamics: GPU accelerated particle-based mesoscale hydrodynamic simulations

被引:47
|
作者
Westphal, E. [1 ,2 ]
Singh, S. P. [3 ]
Huang, C. -C. [3 ]
Gompper, G. [3 ,4 ]
Winkler, R. G. [4 ]
机构
[1] Forschungszentrum Julich, Peter Grunberg Inst, D-52425 Julich, Germany
[2] Forschungszentrum Julich, Julich Ctr Neutron Sci, D-52425 Julich, Germany
[3] Forschungszentrum Julich, Inst Complex Syst, D-52425 Julich, Germany
[4] Forschungszentrum Julich, Inst Adv Simulat, D-52425 Julich, Germany
关键词
Multiparticle collision dynamics; CUDA; GPU; Mesoscale hydrodynamic simulations; RED-BLOOD-CELLS; MOLECULAR-DYNAMICS; TRANSPORT-COEFFICIENTS; MESOSCOPIC MODEL; STAR POLYMERS; FLOW; COLLOIDS; GENERATION; VESICLES; EQUATION;
D O I
10.1016/j.cpc.2013.10.004
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The Compute Unified Device Architecture (CUDA) programming language on a graphics processing unit (GPU) is exploited to develop a GPU-based simulation program for the multiparticle collision dynamics (MPC) approach, a particle-based mesoscale hydrodynamic simulation technique. The coarse-grained description of the fluid dynamics in terms of ballistic motion and local stochastic interactions of particles renders MPC inherently highly parallel. We achieve a 1-2 orders of magnitude performance gain over a comparable CPU-core version of the algorithm, depending on the implementation (single threaded or OpenMP). Various aspects of the implementation are discussed in the context of an optimized performance. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:495 / 503
页数:9
相关论文
共 50 条
  • [31] Origin of Granular Capillarity Revealed by Particle-Based Simulations
    Fan, Fengxian
    Parteli, Eric J. R.
    Poeschel, Thorsten
    PHYSICAL REVIEW LETTERS, 2017, 118 (21)
  • [32] Optimizations for predictive-corrective particle-based fluid simulation on GPU
    Carensac, Samuel
    Pronost, Nicolas
    Bouakaz, Saida
    VISUAL COMPUTER, 2023, 39 (03) : 983 - 995
  • [33] Flow simulations with multi-particle collision dynamics
    E. De Angelis
    M. Chinappi
    G. Graziani
    Meccanica, 2012, 47 : 2069 - 2077
  • [34] GPU accelerated simulations of bluff body flows using vortex particle methods
    Rossinelli, Diego
    Bergdorf, Michael
    Cottet, Georges-Henri
    Koumoutsakos, Petros
    JOURNAL OF COMPUTATIONAL PHYSICS, 2010, 229 (09) : 3316 - 3333
  • [35] Hydrodynamic coupling for particle-based solvent-free membrane models
    Sadeghi, Mohsen
    Noe, Frank
    JOURNAL OF CHEMICAL PHYSICS, 2021, 155 (11)
  • [36] GPU accelerated simulations of 3D deterministic particle transport using discrete ordinates method
    Gong, Chunye
    Liu, Jie
    Chi, Lihua
    Huang, Haowei
    Fang, Jingyue
    Gong, Zhenghu
    JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 230 (15) : 6010 - 6022
  • [37] Pseudo-random number generation for Brownian Dynamics and Dissipative Particle Dynamics simulations on GPU devices
    Phillips, Carolyn L.
    Anderson, Joshua A.
    Glotzer, Sharon C.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 230 (19) : 7191 - 7201
  • [38] Particle-based Fluid Flow Simulations on GPGPU Using CUDA
    Kakuda, Kazuhiko
    Nagashima, Tsuyoki
    Hayashi, Yuki
    Obara, Shunsuke
    Toyotani, Jun
    Katsurada, Nobuya
    Higuchi, Shunji
    Matsuda, Shohei
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2012, 88 (01): : 17 - 28
  • [39] Particle-based simulations of electrophoretic deposition with adaptive physics models
    Karnes, John J.
    Pascall, Andrew J.
    Rehbock, Christoph
    Ramesh, Vaijayanthi
    Worsley, Marcus A.
    Barcikowski, Stephan
    Lee, Elaine
    Giera, Brian
    COMPUTER PHYSICS COMMUNICATIONS, 2024, 297
  • [40] GPU-accelerated direct numerical simulations of decaying compressible turbulence employing a GKM-based solver
    Parashar, Nishant
    Srinivasan, Balaji
    Sinha, Sawan Suman
    Agarwal, Manish
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2017, 83 (10) : 737 - 754