Multiparticle collision dynamics: GPU accelerated particle-based mesoscale hydrodynamic simulations

被引:47
|
作者
Westphal, E. [1 ,2 ]
Singh, S. P. [3 ]
Huang, C. -C. [3 ]
Gompper, G. [3 ,4 ]
Winkler, R. G. [4 ]
机构
[1] Forschungszentrum Julich, Peter Grunberg Inst, D-52425 Julich, Germany
[2] Forschungszentrum Julich, Julich Ctr Neutron Sci, D-52425 Julich, Germany
[3] Forschungszentrum Julich, Inst Complex Syst, D-52425 Julich, Germany
[4] Forschungszentrum Julich, Inst Adv Simulat, D-52425 Julich, Germany
关键词
Multiparticle collision dynamics; CUDA; GPU; Mesoscale hydrodynamic simulations; RED-BLOOD-CELLS; MOLECULAR-DYNAMICS; TRANSPORT-COEFFICIENTS; MESOSCOPIC MODEL; STAR POLYMERS; FLOW; COLLOIDS; GENERATION; VESICLES; EQUATION;
D O I
10.1016/j.cpc.2013.10.004
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The Compute Unified Device Architecture (CUDA) programming language on a graphics processing unit (GPU) is exploited to develop a GPU-based simulation program for the multiparticle collision dynamics (MPC) approach, a particle-based mesoscale hydrodynamic simulation technique. The coarse-grained description of the fluid dynamics in terms of ballistic motion and local stochastic interactions of particles renders MPC inherently highly parallel. We achieve a 1-2 orders of magnitude performance gain over a comparable CPU-core version of the algorithm, depending on the implementation (single threaded or OpenMP). Various aspects of the implementation are discussed in the context of an optimized performance. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:495 / 503
页数:9
相关论文
共 50 条
  • [21] Flow simulations with multi-particle collision dynamics
    De Angelis, E.
    Chinappi, M.
    Graziani, G.
    MECCANICA, 2012, 47 (08) : 2069 - 2077
  • [22] Diffusion and sedimentation in colloidal suspensions using multiparticle collision dynamics with a discrete particle model
    Wani, Yashraj M.
    Kovakas, Penelope Grace
    Nikoubashman, Arash
    Howard, Michael P.
    JOURNAL OF CHEMICAL PHYSICS, 2022, 156 (02)
  • [23] Leveraging ray tracing cores for particle-based simulations on GPUs
    Zhao, Shiwei
    Lai, Zhengshou
    Zhao, Jidong
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2023, 124 (03) : 696 - 713
  • [24] Optimizations for predictive–corrective particle-based fluid simulation on GPU
    Samuel Carensac
    Nicolas Pronost
    Saïda Bouakaz
    The Visual Computer, 2023, 39 : 983 - 995
  • [25] From local to hydrodynamic friction in Brownian motion: A multiparticle collision dynamics simulation study
    Theers, Mario
    Westphal, Elmar
    Gompper, Gerhard
    Winkler, Roland G.
    PHYSICAL REVIEW E, 2016, 93 (03)
  • [26] Hydrodynamics of discrete-particle models of spherical colloids: A multiparticle collision dynamics simulation study
    Poblete, Simon
    Wysocki, Adam
    Gompper, Gerhard
    Winkler, Roland G.
    PHYSICAL REVIEW E, 2014, 90 (03):
  • [27] The effect of hydrodynamic interactions on nanoparticle diffusion in polymer solutions: a multiparticle collision dynamics study
    Chen, Anpu
    Zhao, Nanrong
    Hou, Zhonghuai
    SOFT MATTER, 2017, 13 (45) : 8625 - 8635
  • [28] The aggregation and diffusion of asphaltenes studied by GPU-accelerated dissipative particle dynamics
    Wang, Sibo
    Xu, Junbo
    Wen, Hao
    COMPUTER PHYSICS COMMUNICATIONS, 2014, 185 (12) : 3069 - 3078
  • [29] Partial slip at fluid-solid boundaries by multiparticle collision dynamics simulations
    Hanot, S.
    Belushkin, M.
    Foffi, G.
    SOFT MATTER, 2013, 9 (01) : 291 - 296
  • [30] GPU Accelerated Molecular Dynamics Simulations for Protein-Protein Interaction of Ankyrin Complex
    Kodchakorn, Kanchanok
    Dokmaisrijan, Supaporn
    Chong, Wei Lim
    Payaka, Apirak
    Wisitponchai, Tanchanok
    Nimmanpipug, Piyarat
    Zain, Sharifuddin M.
    Abd Rahman, Noorsaadah
    Tayapiwatana, Chatchai
    Lee, Vannajan Sanghiran
    INTEGRATED FERROELECTRICS, 2014, 156 (01) : 137 - 146