Multiparticle collision dynamics: GPU accelerated particle-based mesoscale hydrodynamic simulations

被引:46
作者
Westphal, E. [1 ,2 ]
Singh, S. P. [3 ]
Huang, C. -C. [3 ]
Gompper, G. [3 ,4 ]
Winkler, R. G. [4 ]
机构
[1] Forschungszentrum Julich, Peter Grunberg Inst, D-52425 Julich, Germany
[2] Forschungszentrum Julich, Julich Ctr Neutron Sci, D-52425 Julich, Germany
[3] Forschungszentrum Julich, Inst Complex Syst, D-52425 Julich, Germany
[4] Forschungszentrum Julich, Inst Adv Simulat, D-52425 Julich, Germany
关键词
Multiparticle collision dynamics; CUDA; GPU; Mesoscale hydrodynamic simulations; RED-BLOOD-CELLS; MOLECULAR-DYNAMICS; TRANSPORT-COEFFICIENTS; MESOSCOPIC MODEL; STAR POLYMERS; FLOW; COLLOIDS; GENERATION; VESICLES; EQUATION;
D O I
10.1016/j.cpc.2013.10.004
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The Compute Unified Device Architecture (CUDA) programming language on a graphics processing unit (GPU) is exploited to develop a GPU-based simulation program for the multiparticle collision dynamics (MPC) approach, a particle-based mesoscale hydrodynamic simulation technique. The coarse-grained description of the fluid dynamics in terms of ballistic motion and local stochastic interactions of particles renders MPC inherently highly parallel. We achieve a 1-2 orders of magnitude performance gain over a comparable CPU-core version of the algorithm, depending on the implementation (single threaded or OpenMP). Various aspects of the implementation are discussed in the context of an optimized performance. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:495 / 503
页数:9
相关论文
共 89 条
[1]   The direct simulation Monte Carlo method [J].
Alexander, FJ ;
Garcia, AL .
COMPUTERS IN PHYSICS, 1997, 11 (06) :588-593
[2]   Mesoscopic solvent simulations: Multiparticle-collision dynamics of three-dimensional flows [J].
Allahyarov, E ;
Gompper, G .
PHYSICAL REVIEW E, 2002, 66 (03) :1-036702
[3]   General purpose molecular dynamics simulations fully implemented on graphics processing units [J].
Anderson, Joshua A. ;
Lorenz, Chris D. ;
Travesset, A. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2008, 227 (10) :5342-5359
[4]   Backtracking of Colloids: A Multiparticle Collision Dynamics Simulation Study [J].
Belushkin, M. ;
Winkler, R. G. ;
Foffi, G. .
JOURNAL OF PHYSICAL CHEMISTRY B, 2011, 115 (48) :14263-14268
[5]   A flexible high-performance Lattice Boltzmann GPU code for the simulations of fluid flows in complex geometries [J].
Bernaschi, Massimo ;
Fatica, Massimiliano ;
Melchionna, Simone ;
Succi, Sauro ;
Kaxiras, Efthimios .
CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2010, 22 (01) :1-14
[6]  
Bird G., 1994, MOL GAS DYNAMICS DIR
[7]   A NOTE ON THE GENERATION OF RANDOM NORMAL DEVIATES [J].
BOX, GEP ;
MULLER, ME .
ANNALS OF MATHEMATICAL STATISTICS, 1958, 29 (02) :610-611
[8]   Mesoscale simulations of polymer dynamics in microchannel flows [J].
Cannavacciuolo, L. ;
Winkler, R. G. ;
Gompper, G. .
EPL, 2008, 83 (03)
[9]   Migration of semiflexible polymers in microcapillary flow [J].
Chelakkot, Raghunath ;
Winkler, Roland G. ;
Gompper, Gerhard .
EPL, 2010, 91 (01)
[10]   Highly accelerated simulations of glassy dynamics using GPUs: Caveats on limited floating-point precision [J].
Colberg, Peter H. ;
Hoefling, Felix .
COMPUTER PHYSICS COMMUNICATIONS, 2011, 182 (05) :1120-1129