Technical design and optimal energy management of a hybrid photovoltaic biogas energy system using multi-objective grey wolf optimisation

被引:11
|
作者
Al-Masri, Hussein M. K. [1 ]
Al-Sharqi, Abed A. [1 ]
机构
[1] Yarmouk Univ, Dept Elect Power Engn, Irbid, Jordan
关键词
hybrid power systems; grey systems; biofuel; renewable energy sources; energy conservation; power grids; air pollution control; battery storage plants; Pareto optimisation; photovoltaic power systems; energy management systems; Jordan; oil-importing developing country; optimal sizing methodology; hybrid photovoltaic biogas energy system; off-grid system configurations; multiobjective grey wolf optimisation algorithm; power supply probability; total current cost; TCC; GHG emissions; hourly measured real values; nondominant Pareto points; affordable Pareto points; reliable Pareto points; environmental Pareto points; on-grid system; reliable cost-effective; off-grid PV; optimal energy management; renewable energy; greenhouse gas emissions; energy affordability; reliability; compromised Pareto points; on-grid system configurations; solar irradiance; municipal solid wastes; load demand; BIOMASS; PV; WIND; ALGORITHM; AREA;
D O I
10.1049/iet-rpg.2020.0330
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Renewable energy is the eventual objective for alleviating greenhouse gas (GHG) emissions and for energy affordability and reliability. This study addresses these issues in Jordan, as an oil-importing developing country. This is done by investigating an optimal sizing methodology for a hybrid photovoltaic (PV) biogas energy system in Ramtha, Jordan in case of on-grid and off-grid system's configurations. The multi-objective grey wolf optimisation algorithm is used to get non-dominant solutions of loss of power supply probability (LPSP) and total current cost (TCC) in a case and GHG emissions with TCC in another case. Hourly measured real values of solar irradiance, temperature, municipal solid wastes and load demand are obtained from formal institutions in Jordan. Detailed mathematical modelling is performed for the proposed system to precisely evaluate its performance. Non-dominant Pareto points are discussed in each Pareto front. These include affordable, compromised, and reliable or environmental Pareto points. The on-grid system is found to be more reliable and cost-effective than the off-grid PV biogas energy system. Further, the compromised solution of the on-grid system is found to be environmentally friendly. Finally, uncertainty investigation is conducted to examine the validity and test strength of the system's design.
引用
收藏
页码:2765 / 2778
页数:14
相关论文
共 50 条
  • [41] Multi-Objective Optimization of an Islanded Green Energy System Utilizing Sophisticated Hybrid Metaheuristic Approach
    Guven, Aykut Fatih
    Yorukeren, Nuran
    Tag-Eldin, Elsayed
    Samy, Mohamed Mahmoud
    IEEE ACCESS, 2023, 11 : 103044 - 103068
  • [42] Grey wolf optimizer for optimal sizing of hybrid wind and solar renewable energy system
    Geleta, Diriba Kajela
    Manshahia, Mukhdeep Singh
    Vasant, Pandian
    Banik, Anirban
    COMPUTATIONAL INTELLIGENCE, 2022, 38 (03) : 1133 - 1162
  • [43] Energy reliability-constrained method for the multi-objective optimization of a photovoltaic-wind hybrid system with battery storage
    Mazzeo, Domenico
    Oliveti, Giuseppe
    Baglivo, Cristina
    Congedo, Paolo M.
    ENERGY, 2018, 156 : 688 - 708
  • [44] Cooperative optimal operation of hybrid energy integrated system considering multi-objective dragonfly algorithm
    Gope, Sadhan
    Roy, Rakesh
    Sharma, Sharmistha
    Dawn, Subhojit
    Reddy, Galiveeti Hemakumar
    ENERGY STORAGE, 2024, 6 (01)
  • [45] Multi-objective operation management of a multi-carrier energy system
    Shabanpour-Haghighi, Amin
    Seifi, Ali Reza
    ENERGY, 2015, 88 : 430 - 442
  • [46] Multi-objective and multi-criteria decision making for Technoeconomic optimum design of hybrid standalone renewable energy system
    Ridha, Hussein Mohammed
    Hizam, Hashim
    Basil, Noorulden
    Mirjalili, Seyedali
    Othman, Mohammad Lutfi
    Ya'acob, Mohammad Effendy
    Ahmadipour, Masoud
    RENEWABLE ENERGY, 2024, 223
  • [47] Optimisation of a sustainable manufacturing system design using the multi-objective approach
    Nujoom, Reda
    Wang, Qian
    Mohammed, Ahmed
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2018, 96 (5-8) : 2539 - 2558
  • [48] Multi-objective energy management strategy of unbalanced multi-microgrids considering technical and economic situations
    Roustaee, Meisam
    Kazemi, Ahad
    SUSTAINABLE ENERGY TECHNOLOGIES AND ASSESSMENTS, 2021, 47
  • [49] Sizing and performance analysis of standalone wind-photovoltaic based hybrid energy system using ant colony optimisation
    Suhane, Payal
    Rangnekar, Saroj
    Mittal, Arvind
    Khare, Anula
    IET RENEWABLE POWER GENERATION, 2016, 10 (07) : 964 - 972
  • [50] Solving Multi-Objective Energy Management of a DC Microgrid using Multi-Objective Multiverse Optimization
    Lagouir, Marouane
    Badri, Abdelmajid
    Sayouti, Yassine
    INTERNATIONAL JOURNAL OF RENEWABLE ENERGY DEVELOPMENT-IJRED, 2021, 10 (04): : 911 - 922