Inverse problem for Dirac systems with locally square-summable potentials and rectangular Weyl functions

被引:12
作者
Sakhnovich, Alexander [1 ]
机构
[1] Univ Vienna, Fak Math, A-1090 Vienna, Austria
基金
奥地利科学基金会;
关键词
Dirac system; Weyl function; inverse problem; rectangular potential; similarity transformation; SPECTRAL THEORY; OPERATORS;
D O I
10.4171/JST/106
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Inverse problem for Dirac systems with locally square summable potentials and rectangular Weyl functions is solved. For that purpose we use a new result on the linear similarity between operators from a subclass of triangular integral operators and the operator of integration.
引用
收藏
页码:547 / 569
页数:23
相关论文
共 23 条
  • [1] Reconstruction of radial Dirac operators
    Albeverio, S.
    Hryniv, R.
    Mykytyuk, Ya.
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2007, 48 (04)
  • [2] Alpay D., 2010, INTEGR EQUAT OPER TH, V68
  • [3] [Anonymous], 1988, SOVIET MATH IZ VUZ
  • [4] Clark S., 2006, CONT MATH, V412, P103
  • [5] Supersymmetry and Schrodinger-type operators with distributional matrix-valued potentials
    Eckhardt, Jonathan
    Gesztesy, Fritz
    Nichols, Roger
    Teschl, Gerald
    [J]. JOURNAL OF SPECTRAL THEORY, 2014, 4 (04) : 715 - 768
  • [6] WEYL THEORY AND EXPLICIT SOLUTIONS OF DIRECT AND INVERSE PROBLEMS FOR DIRAC SYSTEM WITH A RECTANGULAR MATRIX POTENTIAL
    Fritzsche, B.
    Kirstein, B.
    Roitberg, I. Ya.
    Sakhnovich, A. L.
    [J]. OPERATORS AND MATRICES, 2013, 7 (01): : 183 - 196
  • [7] Recovery of the Dirac system from the rectangular Weyl matrix function
    Fritzsche, B.
    Kirstein, B.
    Roitberg, I. Ya
    Sakhnovich, A. L.
    [J]. INVERSE PROBLEMS, 2012, 28 (01)
  • [8] Semiseparable Integral Operators and Explicit Solution of an Inverse Problem for a Skew-Self-Adjoint Dirac-Type System
    Fritzsche, B.
    Kirstein, B.
    Sakhnovich, A. L.
    [J]. INTEGRAL EQUATIONS AND OPERATOR THEORY, 2010, 66 (02) : 231 - 251
  • [9] Gesztesy F, 2000, COMMUN MATH PHYS, V211, P271
  • [10] A new approach to inverse spectral theory, II. General real potentials and the connection to the spectral measure
    Gesztesy, F
    Simon, B
    [J]. ANNALS OF MATHEMATICS, 2000, 152 (02) : 593 - 643