Adaptive Federated Learning in Resource Constrained Edge Computing Systems

被引:1303
作者
Wang, Shiqiang [1 ]
Tuor, Tiffany [2 ]
Salonidis, Theodoros [1 ]
Leung, Kin K. [2 ]
Makaya, Christian [1 ]
He, Ting [3 ]
Chan, Kevin [4 ]
机构
[1] IBM Thomas J Watson Res Ctr, Yorktown Hts, NY 10598 USA
[2] Imperial Coll London, Dept Elect & Elect Engn, London SW7 2AZ, England
[3] Penn State Univ, Dept Comp Sci & Engn, University Pk, PA 16802 USA
[4] Army Res Lab, Adelphi, MD 20783 USA
关键词
Distributed machine learning; federated learning; mobile edge computing; wireless networking;
D O I
10.1109/JSAC.2019.2904348
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Emerging technologies and applications including Internet of Things, social networking, and crowd-sourcing generate large amounts of data at the network edge. Machine learning models are often built from the collected data, to enable the detection, classification, and prediction of future events. Due to bandwidth, storage, and privacy concerns, it is often impractical to send all the data to a centralized location. In this paper, we consider the problem of learning model parameters from data distributed across multiple edge nodes, without sending raw data to a centralized place. Our focus is on a generic class of machine learning models that are trained using gradient-descent-based approaches. We analyze the convergence bound of distributed gradient descent from a theoretical point of view, based on which we propose a control algorithm that determines the best tradeoff between local update and global parameter aggregation to minimize the loss function under a given resource budget. The performance of the proposed algorithm is evaluated via extensive experiments with real datasets, both on a networked prototype system and in a larger-scale simulated environment. The experimentation results show that our proposed approach performs near to the optimum with various machine learning models and different data distributions.
引用
收藏
页码:1205 / 1221
页数:17
相关论文
共 45 条
[1]  
Agarwal A., 2011, Advances in NeurIPS, V24
[2]   Convex Optimization: Algorithms and Complexity [J].
不详 .
FOUNDATIONS AND TRENDS IN MACHINE LEARNING, 2015, 8 (3-4) :232-+
[3]  
[Anonymous], IEEE COMMUN SURV TUT, DOI DOI 10.1109/COMST.2017.2682318
[4]  
[Anonymous], INEQUALITY THEORY AP
[5]  
[Anonymous], P SYSML MAR APR
[6]  
[Anonymous], IEEE COMMUN SURVEYS
[7]  
[Anonymous], 2016, P NIPS WORKSH PRIV M
[8]  
[Anonymous], 2016, P NIPS WORKSH PRIV M
[9]  
[Anonymous], P AAAI C ART INT JAN
[10]  
[Anonymous], WIRELESS NETWORK INT