Nanoindentation study of the mechanical behavior of TiO2 nanotube arrays

被引:46
作者
Xu, Y. N. [1 ]
Liu, M. N. [2 ]
Wang, M. C. [1 ]
Oloyede, A. [1 ]
Bell, J. M. [1 ]
Yan, C. [1 ]
机构
[1] Queensland Univ Technol, Fac Sci & Engn, Sch Chem Phys & Mech Engn, Brisbane, Qld 4001, Australia
[2] Chinese Acad Sci, Suzhou Inst Nanotech & Nanobion, I Lab, Suzhou, Peoples R China
基金
澳大利亚研究理事会;
关键词
TITANIUM; DEFORMATION; FABRICATION; LENGTH;
D O I
10.1063/1.4932213
中图分类号
O59 [应用物理学];
学科分类号
摘要
Titanium dioxide (TiO2) nanotube arrays are attracting increasing attention for use in solar cells, lithium-ion batteries, and biomedical implants. To take full advantage of their unique physical properties, such arrays need to maintain adequate mechanical integrity in applications. However, the mechanical performance of TiO2 nanotube arrays is not well understood. In this work, we investigate the deformation and failure of TiO2 nanotube arrays using the nanoindentation technique. We found that the load-displacement response of the arrays strongly depends on the indentation depth and indenter shape. Substrate-independent elastic modulus and hardness can be obtained when the indentation depth is less than 2.5% of the array height. The deformation mechanisms of TiO2 nanotube arrays by Berkovich and conical indenters are closely associated with the densification of TiO2 nanotubes under compression. A theoretical model for deformation of the arrays under a large-radius conical indenter is also proposed. (C) 2015 AIP Publishing LLC.
引用
收藏
页数:7
相关论文
共 34 条
[1]   Self-organized, free-standing TiO2 nanotube membrane for flow-through photocatalytic applications [J].
Albu, Sergiu P. ;
Ghicov, Andrei ;
Macak, Jan M. ;
Hahn, Robert ;
Schmuki, Patrik .
NANO LETTERS, 2007, 7 (05) :1286-1289
[2]   Mechanical models of cellular solids: Parameters identification from experimental tests [J].
Avalle, Massimiliano ;
Belingardi, Giovanni ;
Ibba, Andrea .
INTERNATIONAL JOURNAL OF IMPACT ENGINEERING, 2007, 34 (01) :3-27
[3]   Microscale deformation of (001) and (100) rutile single crystals under spherical nanoindentation [J].
Basu, Sandip ;
Elshrief, Omar A. ;
Coward, Robert ;
Anasori, Babak ;
Barsoum, Michel W. .
JOURNAL OF MATERIALS RESEARCH, 2012, 27 (01) :53-63
[4]   Self-organized porous titanium oxide prepared in H2SO4/HF electrolytes [J].
Beranek, R ;
Hildebrand, H ;
Schmuki, P .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2003, 6 (03) :B12-B14
[5]   Entanglement and the nonlinear elastic behavior of forests of coiled carbon nanotubes [J].
Coluci, V. R. ;
Fonseca, A. F. ;
Galvao, D. S. ;
Daraio, C. .
PHYSICAL REVIEW LETTERS, 2008, 100 (08)
[6]   Microstructure and deformation behavior of biocompatible TiO2 nanotubes on titanium substrate [J].
Crawford, G. A. ;
Chawla, N. ;
Das, K. ;
Bose, S. ;
Bandyopadhyay, A. .
ACTA BIOMATERIALIA, 2007, 3 (03) :359-367
[7]   Nanomechanics of biocompatible TiO2 nanotubes by interfacial Force Microscopy (IFM) [J].
Crawford, G. A. ;
Chawla, N. ;
Houston, J. E. .
JOURNAL OF THE MECHANICAL BEHAVIOR OF BIOMEDICAL MATERIALS, 2009, 2 (06) :580-587
[8]  
Fischer-Cripps A.C., 2011, Nanoindentation, V1
[9]   Titanium oxide nanotube arrays prepared by anodic oxidation [J].
Gong, D ;
Grimes, CA ;
Varghese, OK ;
Hu, WC ;
Singh, RS ;
Chen, Z ;
Dickey, EC .
JOURNAL OF MATERIALS RESEARCH, 2001, 16 (12) :3331-3334
[10]   Plasticity in small-sized metallic systems: Intrinsic versus extrinsic size effect [J].
Greer, Julia R. ;
De Hosson, Jeff Th. M. .
PROGRESS IN MATERIALS SCIENCE, 2011, 56 (06) :654-724