A sparse multiresolution stochastic approximation for uncertainty quantification

被引:5
|
作者
Schiavazzi, D. [1 ]
Doostan, A.
Iaccarino, G.
机构
[1] Univ Padua, Dipartimento Matemat, I-35100 Padua, Italy
来源
RECENT ADVANCES IN SCIENTIFIC COMPUTING AND APPLICATIONS | 2013年 / 586卷
关键词
DIFFERENTIAL-EQUATIONS; POLYNOMIAL CHAOS;
D O I
10.1090/conm/586/11634
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The present work proposes a novel sampling-based uncertainty propagation framework in which solutions are represented using a multiresolution dictionary. The coefficients of such an expansion are evaluated using greedy methodologies within the Compressive Sampling framework. The effect of various sampling strategies is investigated. The proposed methodology is verified on the Kraichnan-Orszag problem with one and two random initial conditions.
引用
收藏
页码:295 / +
页数:3
相关论文
共 50 条
  • [41] Spectral Stochastic FEM for Uncertainty Quantification Due to Multiple Dielectric Variabilities
    Narendranath, Abhijith B.
    Vinoy, Kalarickaparambil Joseph
    IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2019, 18 (10): : 1961 - 1965
  • [42] A data-driven stochastic collocation approach for uncertainty quantification in MEMS
    Agarwal, Nitin
    Aluru, N. R.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2010, 83 (05) : 575 - 597
  • [43] Multivariable Uncertainty Quantification of Transmission Line Field-to-line Coupling Based on Stochastic Collocation Method
    Hao, Jin-peng
    Dong, Ning
    Guo, Fei
    Li, Xiu-guang
    Wu, Xu-tao
    Sun, Yi
    Sun, Rui-jiang
    2017 IEEE CONFERENCE ON ENERGY INTERNET AND ENERGY SYSTEM INTEGRATION (EI2), 2017,
  • [44] Mixed aleatory-epistemic uncertainty quantification with stochastic expansions and optimization-based interval estimation
    Eldred, M. S.
    Swiler, L. P.
    Tang, G.
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2011, 96 (09) : 1092 - 1113
  • [45] An integrated sensitivity-uncertainty quantification framework for stochastic phase-field modeling of material damage
    de Moraes, Eduardo A. Barros
    Zayernouri, Mohsen
    Meerschaert, Mark M.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2021, 122 (05) : 1352 - 1377
  • [46] Uncertainty Quantification of Printed Microwave Interconnects by Use of the Sparse Polynomial Chaos Expansion Method
    Papadopoulos, Aristeides D.
    Tehrani, Bijan K.
    Bahr, Ryan A.
    Tentzeris, Emmanouil M.
    Glytsis, Elias N.
    IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2022, 32 (01) : 1 - 4
  • [47] Sparse-grids uncertainty quantification of part-scale additive manufacturing processes
    Chiappetta, Mihaela
    Piazzola, Chiara
    Carraturo, Massimo
    Tamellini, Lorenzo
    Reali, Alessandro
    Auricchio, Ferdinando
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2023, 256
  • [48] Efficient Uncertainty Quantification for Unconfined Flow in Heterogeneous Media with the Sparse Polynomial Chaos Expansion
    Meng, Jin
    Li, Heng
    TRANSPORT IN POROUS MEDIA, 2019, 126 (01) : 23 - 38
  • [49] Uncertainty quantification of acoustic metamaterial bandgaps with stochastic material properties and geometric defects
    Zhang, Han
    Mahabadi, Rayehe Karimi
    Rudin, Cynthia
    Guilleminot, Johann
    Brinson, L. Catherine
    COMPUTERS & STRUCTURES, 2024, 305
  • [50] A STOCHASTIC DOMAIN DECOMPOSITION AND POST-PROCESSING ALGORITHM FOR EPISTEMIC UNCERTAINTY QUANTIFICATION
    Ganesh, M.
    Hawkins, S. C.
    Tartakovsky, A. M.
    Tipireddy, R.
    INTERNATIONAL JOURNAL FOR UNCERTAINTY QUANTIFICATION, 2023, 13 (05) : 1 - 22