A sparse multiresolution stochastic approximation for uncertainty quantification

被引:5
|
作者
Schiavazzi, D. [1 ]
Doostan, A.
Iaccarino, G.
机构
[1] Univ Padua, Dipartimento Matemat, I-35100 Padua, Italy
来源
RECENT ADVANCES IN SCIENTIFIC COMPUTING AND APPLICATIONS | 2013年 / 586卷
关键词
DIFFERENTIAL-EQUATIONS; POLYNOMIAL CHAOS;
D O I
10.1090/conm/586/11634
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The present work proposes a novel sampling-based uncertainty propagation framework in which solutions are represented using a multiresolution dictionary. The coefficients of such an expansion are evaluated using greedy methodologies within the Compressive Sampling framework. The effect of various sampling strategies is investigated. The proposed methodology is verified on the Kraichnan-Orszag problem with one and two random initial conditions.
引用
收藏
页码:295 / +
页数:3
相关论文
共 50 条
  • [21] A Comparison of Efficient Uncertainty Quantification Techniques for Stochastic Multiscale Systems
    Kimaev, Grigoriy
    Ricardez-Sandoval, Luis A.
    AICHE JOURNAL, 2017, 63 (08) : 3361 - 3373
  • [22] Stochastic model order reduction in uncertainty quantification of composite structures
    Sasikumar, P.
    Suresh, R.
    Gupta, Sayan
    COMPOSITE STRUCTURES, 2015, 128 : 21 - 34
  • [23] A Perturbative Stochastic Galerkin Method for the Uncertainty Quantification of Linear Circuits
    Manfredi, Paolo
    Trinchero, Riccardo
    Vande Ginste, Dries
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2020, 67 (09) : 2993 - 3006
  • [24] Stochastic Drag Analysis via Polynomial Chaos Uncertainty Quantification
    Yamazaki, Wataru
    TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES, 2015, 58 (02) : 89 - 99
  • [25] UNCERTAINTY QUANTIFICATION IN STOCHASTIC SYSTEMS USING POLYNOMIAL CHAOS EXPANSION
    Sepahvand, K.
    Marburg, S.
    Hardtke, H. -J.
    INTERNATIONAL JOURNAL OF APPLIED MECHANICS, 2010, 2 (02) : 305 - 353
  • [26] Uncertainty Quantification in Discrete Fracture Network Models: Stochastic Geometry
    Berrone, Stefano
    Canuto, Claudio
    Pieraccini, Sandra
    Scialo, Stefano
    WATER RESOURCES RESEARCH, 2018, 54 (02) : 1338 - 1352
  • [27] Uncertainty Quantification and Sensitivity Analysis in Subsurface Defect Detection with Sparse Models
    Zygiridis, Theodoros
    Kyrgiazoglou, Athanasios
    Amanatiadis, Stamatios
    Kantartzis, Nikolaos
    Theodoulidis, Theodoros
    JOURNAL OF NONDESTRUCTIVE EVALUATION, 2024, 43 (04)
  • [28] Uncertainty Quantification of a CMOS Oscillator using Stochastic Collocation Techniques
    Chordia, Aksh
    Tripathi, Jai Narayan
    2021 JOINT IEEE INTERNATIONAL SYMPOSIUM ON ELECTROMAGNETIC COMPATIBILITY, SIGNAL & POWER INTEGRITY, AND EMC EUROPE (EMC+SIPI AND EMC EUROPE), 2021, : 391 - 394
  • [29] Uncertainty quantification for stochastic dynamical systems using time-dependent stochastic bases
    Jinchun Lan
    Qianlong Zhang
    Sha Wei
    Zhike Peng
    Xinjian Dong
    Wenming Zhang
    Applied Mathematics and Mechanics, 2019, 40 : 63 - 84
  • [30] Uncertainty quantification for stochastic dynamical systems using time-dependent stochastic bases
    Jinchun LAN
    Qianlong ZHANG
    Sha WEI
    Zhike PENG
    Xinjian DONG
    Wenming ZHANG
    AppliedMathematicsandMechanics(EnglishEdition), 2019, 40 (01) : 63 - 84